From two to three dimensions

Examples 00000 0000000 Conclusions

3D Elastic Time-lapse Full Waveform Inversion

Espen Birger Raknes and Børge Arntsen

Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: espen.raknes@ntnu.no

The ROSE meeting May 6th 2014

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Background

- During the last decade full waveform inversion (FWI) has proven to be a promising method for parameter model estimation
- Increase in computational power leads to an increase in problem size and type of wave phenomena included in the modeling
- Using FWI to reveal time-lapse effects directly in the parameter models is a rather new idea

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Objectives

- Apply elastic isotropic FWI on multi-component time-lapse data in 3D
- Invert for time-lapse changes in the P- and S-wave velocity models
- Investigate two data-difference based time-lapse FWI approaches

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Outline

- 1. Theory
- 2. From two to three dimensions
- 3. Examples
- 4. Conclusions

A Quick Overview of Full Waveform Inversion

Overall Goal

Find a parameter model from which it is possible to create synthetic data that is close to some measured data

Define $S(\mathbf{m})$ as the measure between synthetic and measured data. The FWI is then the problem

```
\mathop{\arg\min}_{\mathbf{m}} S(\mathbf{m})
```

A Quick Overview of Full Waveform Inversion

Overall Goal

Find a parameter model from which it is possible to create synthetic data that is close to some measured data

Define $S(\mathbf{m})$ as the measure between synthetic and measured data. The FWI is then the problem

$\underset{\mathbf{m}}{\arg\min} S(\mathbf{m})$

Solved using an iterative method

$$\mathbf{m}_{k+1} = \mathbf{m}_k - \alpha_k \mathbf{H}_k^{-1} \mathbf{g}_k,$$

- \mathbf{m}_k model at iteration k
- \mathbf{g}_k gradient of $S(\mathbf{m})$ at iteration k
- \mathbf{H}_k Hessian of $S(\mathbf{m})$ at iteration k
- α_k step length at iteration k

 $\substack{\text{Theory}\\0{\bullet}0000}$

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

Schematic View of FWI

Syncronization In parallel

 $\begin{array}{c} {\rm Theory} \\ {\rm 000000} \end{array}$

Examples 00000 0000000 Conclusions

Time-lapse Full Waveform Inversion

Goal

Use full waveform inversion to quantify changes in time for parameters affecting wave propagation.

May be used

- as monitoring tool during the life-time of a reservoir
- to monitor injection of CO₂ in CCS experiments
- quantify amount of injected CO₂

 $\substack{\text{Theory}\\000{\bullet}00}$

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Approach 1

 $\substack{\text{Theory}\\0000 \bullet 0}$

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

Approach 2

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

TLFWI at a glance

• Need to perform at least two inversions \rightarrow Costly method

 $\begin{array}{c} {\rm Theory} \\ {\rm 00000} \bullet \end{array}$

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

TLFWI at a glance

- Need to perform at least two inversions
 → Costly method
- The method may introduce artifacts in the time-lapse images due to for instance
 - non-linearity
 - ill-posedness
 - data differences
 - \rightarrow Often called time-lapse artifacts

From two to three dimensions •000 Examples 00000 0000000 Conclusions

From two to three dimensions

The real world is 3D, so we need to approximate it in 3D...

... but it is not easy

Some of the difficulties are

- More unknowns in the inverse problem, but not necessarily more data (i.e. more degrees of freedom, "more" ill-posed)
- Numerical methods scale extremely bad (i.e. long runtimes)
- Not everything can be done in memory

From two to three dimensions ${\circ}{\bullet}{\circ}{\circ}{\circ}$

Examples 00000 0000000 Conclusions

The major problem: the gradient

$$g(\mathbf{x}) = \int_{T} \overrightarrow{\psi}(\mathbf{x}, t) \overleftarrow{\psi}(\mathbf{x}, t) \, dt, \qquad (\mathbf{x}, t) \in (\mathbb{R}^{3} \times T)$$

From two to three dimensions $0{\bullet}00$

Examples 00000 0000000 Conclusions

The major problem: the gradient

$$g(\mathbf{x}) = \int_{T} \overrightarrow{\psi}(\mathbf{x}, t) \overleftarrow{\psi}(\mathbf{x}, t) \, dt, \qquad (\mathbf{x}, t) \in (\mathbb{R}^{3} \times T)$$

• We need the wave fields at each time step to compute the cross correlation

 \rightarrow Impossible: Would require something like >1000 TB of data storage for a small survey

From two to three dimensions $0{\bullet}00$

Examples 00000 0000000 Conclusions

The major problem: the gradient

$$g(\mathbf{x}) = \int_{T} \overrightarrow{\psi}(\mathbf{x}, t) \overleftarrow{\psi}(\mathbf{x}, t) \, dt, \qquad (\mathbf{x}, t) \in (\mathbb{R}^{3} \times T)$$

• We need the wave fields at each time step to compute the cross correlation

 \rightarrow Impossible: Would require something like >1000 TB of data storage for a small survey

• Large data transfer rates on the computer clusters are not possible

From two to three dimensions $_{0\bullet00}$

Examples 00000 0000000 Conclusions

The major problem: the gradient

$$g(\mathbf{x}) = \int_{T} \overrightarrow{\psi}(\mathbf{x}, t) \overleftarrow{\psi}(\mathbf{x}, t) \, dt, \qquad (\mathbf{x}, t) \in (\mathbb{R}^{3} \times T)$$

• We need the wave fields at each time step to compute the cross correlation

 \rightarrow Impossible: Would require something like >1000 TB of data storage for a small survey

- Large data transfer rates on the computer clusters are not possible
- **Solution:** Need to reconstruct the wave fields when they are needed, but how do we do that?

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Reconstruction of the wave fields

- Each boundary of the cube is stored to disc during the forward modeling
- To decrease data transfer, not all time-steps are saved
- In the backpropagation of the wave fields, we are reconstructing the forward field by feeding in each side of the cube, and use interpolation (to "reconstruct" the non-saved steps) where it is required

From two to three dimensions $000 \bullet$

Examples 00000 0000000 Conclusions

Pros and cons

- We are keeping the need for storage at a minimum
- The necessary data transfer is "small"
- Back-propagation becomes (at least) twice as costly
- We are not able to reconstruct the field exactly, since we only have information on the boundaries

From two to three dimensions 0000

Examples •0000 0000000 Conclusions

Simple layered model

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

Simple layered model

• Source: Ricker wavelet with center frequency 6.0Hz

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Simple layered model

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Simple layered model: Approach 1

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Simple layered model: Approach 2

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

- 16 ocean-bottom cables
- Cable length: 4.0km
- Cable separation: 250m
- Total number of receivers: 2560
- 441 shots with 100m shot sampling in x- and y-direction
- Grid sampling: 25m
- Source: Ricker wavelet with center frequency 6.0Hz

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

From two to three dimensions $_{\rm OOOO}$

Examples 00000 0000000 Conclusions

From two to three dimensions 0000

Conclusions

Model with channel system: Approach 1

From two to three dimensions 0000

Examples 00000 000000 Conclusions

Model with channel system: Approach 2

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Conclusions

- It is possible to do FWI in 3D within acceptable computing times
- FWI may be used to detect time-lapse effects in 3D
- Possible to invert for time-lapse changes in V_p and V_s using OBCs
- Small differences in the two time-lapse approaches

From two to three dimensions 0000

Examples 00000 0000000 Conclusions

Acknowledgements

We thank the Norwegian Research Council, BIGCCS, and the ROSE consortium for financing this research.