

# Magnetotelluric inversion – classic impedance vs. direct field inversion

Lutz Mütschard, Ketil Hokstad and Bjørn Ursin

Supervisors: Ketil Hokstad and Bjørn Ursin

ROSE meeting May 2014 in Trondheim



#### Content

- Motivation
- Magnetotelluric field
- Inversion
  - I. Forward modeling
  - II. Inversion method
  - III. Synthetic example
  - IV. Real data example
- > Discussion
- Conclusion and road ahead
- Acknowledgements



#### Motivation

- Final goal to develop joint inversion for EM, magnetics, and gravity data for deep basin characterization
- Base is a 3D magnetotelluric inversion
- Compare impedance vs. direct EM field inversion



#### Magnetotelluric field – static part

| $V(r,\theta,\phi,t) = a \sum_{n=1}^{N} \sum_{n=1}^{n} \left(\frac{a}{r}\right)^{n+1}$ | $\left[g_n^m(t)\cos m\phi + h_n^m(t)\sin m\phi\right] \times P_n^m(\cos\theta)$ |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| n=1 $m=0$ $(r)$                                                                       |                                                                                 |

| g/ | h n | m | 1900.0 | 1920.0 | 1940.0 | 1960.0 | 1980.0 | 2000.0   | 2010.0   |
|----|-----|---|--------|--------|--------|--------|--------|----------|----------|
| g  | 1   | 0 | -31543 | -31060 | -30654 | -30421 | -29992 | -29619.4 | -29496.5 |
| g  | 1   | 1 | -2298  | -2317  | -2292  | -2169  | -1956  | -1728.2  | -1585.9  |
| h  | 1   | 1 | 5922   | 5845   | 5821   | 5791   | 5604   | 5186.1   | 4945.1   |
| g  | 2   | 0 | -677   | -839   | -1106  | - 1555 | -1997  | -2267.7  | -2396.6  |
| g  | 2   | 1 | 2905   | 2959   | 2981   | 3002   | 3027   | 3068.4   | 3026.0   |
| h  | 2   | 1 | -1061  | -1259  | -1614  | -1967  | -2129  | -2481.6  | -2707.7  |
| g  | 2   | 2 | 924    | 1407   | 1566   | 1590   | 1663   | 1670.9   | 1668.6   |
| ĥ  | 2   | 2 | 1121   | 823    | 528    | 206    | -200   | -458.0   | -575.4   |
| g  | З   | 0 | 1022   | 1111   | 1240   | 1302   | 1281   | 1339.6   | 1339.7   |
| g  | З   | 1 | -1469  | -1600  | -1790  | -1992  | -2180  | -2288.0  | -2326.3  |
| ň  | З   | 1 | - 330  | - 445  | - 499  | -414   | -336   | -227.6   | -160.5   |
| g  | З   | 2 | 1256   | 1205   | 1232   | 1289   | 1251   | 1252.1   | 1231.7   |
| ň  | З   | 2 | 3      | 103    | 163    | 224    | 271    | 293.4    | 251.7    |
| g  | З   | 3 | 572    | 839    | 916    | 878    | 833    | 714.5    | 634.2    |
| ň  | 3   | 3 | 523    | 293    | 43     | -130   | -252   | -491.1   | -536.8   |





Total field intensity of 51.781nT for Trondheim

#### Magnetotelluric field – variational part



| sources     | Freq.       | Period      |
|-------------|-------------|-------------|
| meteorology | 1Hz – 1kHz  | 0.001s - 1s |
| Solar wind  | 1µHz – 1Hz  | 1s-10000s   |
| Dead band   | 0.5Hz – 5Hz | 0.2s – 2s   |

Daily variation ca. 20 – 50nT (during mag. Storm – 200nT)



NTNU – Trondheim Norwegian University of Science and Technology

#### Magnetotelluric field – skin depth

$$\delta = \sqrt{\frac{T\tilde{\rho}}{\Pi\mu_0}} = \sqrt{\frac{1}{\Pi\mu_0\omega\tilde{\sigma}}} \simeq 500\sqrt{T\rho_a}$$
$$\mathbf{E}(z) = \mathbf{E}_0(z=0)e^{-\frac{z}{\delta}}$$

|                        | Period 1s       | Period 1h                |
|------------------------|-----------------|--------------------------|
| $ ho = 1 \ \Omega m$   | $\delta = 500m$ | $\delta = 30 \text{km}$  |
| $ ho$ = 100 $\Omega$ m | $\delta=5000m$  | $\delta = 300 \text{km}$ |







#### Magnetotelluric field – impedance data



$$Z_{xy} = \frac{\langle E_x H_x^* \rangle \langle H_x H_y^* \rangle - \langle E_x H_y^* \rangle \langle H_x H_x^* \rangle}{\langle H_y H_x^* \rangle \langle H_x H_y^* \rangle - \langle H_y H_y^* \rangle \langle H_y H_x^* \rangle}$$

Decimation (down sampling)
 Receiver orientation
 Fourier transform
 Band averaging
 Transfer function estimation
 Display



Magnetotelluric field – direct field data

Find unknown source distribution with help of a 1D response receiver



#### **Inversion - Forward Modeling**

>Finite volume modeling of el. field (Weiss et al. 2006)
 >Scattered field solution
 >PARDISO sparse direct solver to invert coefficient matrix
 >Example 40x40x40 cells -> 201720 x 201720 matrix

$$\nabla \times \nabla \times \mathbf{E} + i\omega\mu_0 \sigma \mathbf{E} = -i\omega\mu_0 \sigma \mathbf{J}_s$$
$$\mathbf{E}' = \mathbf{E} - \mathbf{E}^0$$
$$\nabla \times \nabla \times \mathbf{E}' + i\omega\mu_0 \sigma \mathbf{E}' = -i\omega\mu_0 (\sigma - \sigma_0)\mathbf{E}_0$$
$$\mathbf{A}\mathbf{e} = \mathbf{b}$$



#### Inversion of MT data

- Gauss Newton inversion of the scattered field
- Undetermined problem 50000 to 100000 unknowns with ca. 1000 to 3000 data points
- > Minimum norm solution

 $\mathbf{U}_d$ 

$$\mathbf{m} = [m_1, m_2, m_3, ..., m_M]^T = [\sigma_1, \sigma_2, \sigma_3, ..., \sigma_M]^T$$

$$\mathbf{d} = [d_1, d_2, d_3, ..., d_N]^T$$
$$\mathbf{d} = [E_x|_{per=1}^{sta=1}, E_y|_{per=1}^{sta=1}, H_x|_{per=1}^{sta=1}, ..., H_y|_{per=nper}^{sta=nsta}]^T$$
$$\mathbf{d} = [Z_{xx}|_{per=1}^{sta=1}, Z_{xy}|_{per=1}^{sta=1}, Z_{yx}|_{per=1}^{sta=1}, ..., Z_{yy}|_{per=nper}^{sta=nsta}]^T$$
$$\mathbf{C}_d^{-1} = diag \left[ 1/err_1^2, 1/err_2^2, \cdots, 1/err_N^2 \right]$$

$$\phi = \frac{1}{\lambda} \left[ \left( \mathbf{d} - \mathbf{F}(\mathbf{m}) \right)^T \mathbf{C}_d^{-1} \left( \mathbf{d} - \mathbf{F}(\mathbf{m}) \right) \right] + \left( \mathbf{m} - \mathbf{m}_0 \right)^T \mathbf{C}_m^{-1} \left( \mathbf{m} - \mathbf{m}_0 \right)$$



NTNU – Trondheim Norwegian University of Science and Technology

#### Inversion of MT data – Jacobi calculation

Gauss – Newton inversion

$$\mathbf{m}_{k+1} - \mathbf{m}_0 = \mathbf{C}_m \mathbf{J}_k^T \left( \lambda \mathbf{C}_d + \mathbf{J}_k \mathbf{C}_m \mathbf{J}_k^T \right)^{-1} \left( \mathbf{d} - \mathbf{F}(\mathbf{m}_k) + \mathbf{J}_k(\mathbf{m}_k - \mathbf{m}_0) \right)$$
$$\mathbf{J}^T = \left( -\frac{\partial \mathbf{A}}{\partial \mathbf{m}} \mathbf{e} + \frac{\partial \mathbf{b}}{\partial \mathbf{m}} \right)^T \mathbf{A}^{-1} \left( \frac{\partial \psi}{\partial \mathbf{e}} \right)^T$$
$$Z_{xx} = \frac{E_x^1 H_y^2 - E_x^2 H_y^1}{H_x^1 H_y^2 - H_x^2 H_y^1}$$

$$\frac{\partial Z_{xx}}{\partial e_k} = \left[ (H_x^1 H_y^2 - H_x^2 H_y^1) (H_y^2 \frac{\partial E_x^1}{\partial e_k} - E_x^2 \frac{\partial H_y^1}{\partial e_k}) - (E_x^1 H_y^2 - E_x^2 H_y^1) (H_y^2 \frac{\partial H_x^1}{\partial e_k} - H_x^2 \frac{\partial H_y^1}{\partial e_k}) \right] / (H_x^1 H_y^2 - H_x^2 H_y^1)^2 \\ + \left[ (H_x^1 H_y^2 - H_x^2 H_y^1) (E_x^1 \frac{\partial H_y^2}{\partial e_k} - H_y^1 \frac{\partial E_x^2}{\partial e_k}) - (E_x^1 H_y^2 - E_x^2 H_y^1) (H_x^1 \frac{\partial H_y^2}{\partial e_k} - H_y^1 \frac{\partial H_x^2}{\partial e_k}) \right] / (H_x^1 H_y^2 - H_x^2 H_y^1)^2$$



#### Synthetic example

- L shaped resistor(0.001 S/m) in a conductive background (0.1 S/m) between 1 – 8km depth
- Model 40x40x40 cells 600m resolution center part
- > 25 receiver on the seabed (260m water depth)
- 10 frequencies from 0.5 to 0.002Hz
- > data: Zxy and Zyx, or Ex,Ey,Hx,Hy





www.ntnu.edu



## Nordkapp basin – Jupiter salt body

Real data example







#### www.ntnu.edu

#### Real data example

 Model 47x47x31 cells
 Homogeneous half-space of 0.1S/m, 260m waterlayer (3.3S/m), airlayer

> 10 frequencies, Zxy, Zyx





#### Real data example







www.ntnu.edu

### Discussion

pro and contra of direct field inversion

- > <u>PRO</u>
- No transfer-function estimation (less processing)
- Simpler (less non-linearity) inversion
- Faster convergence
- Better depth resolution
- <u>CONTRA</u>
- > 1D receiver, source estimation



#### Conclusions

- Alternative imaging methods to help seismic interpretation
- Magnetotellurics offers low resolution but good sensitivity at wider depth range
- Gauss Newton inversion
- good results for synthetic and real data
- Improve non-linearity and convergence with direct inversion of field components



#### Acknowledgements

- NFR for financial support to the ROSE project
- Statoil and their partner GDF SUEZ E&P Norge for providing data from the Nordkapp basin survey
- Ketil Hokstad and Bjørn Ursin for their supervision









#### Literature

L. Mütschard, K. Hokstad and B. Ursin, *Estimation of seafloor electromagnetic receiver orientation*: Geophysics 2014

T. Wiik, L. Løseth, B. Ursin and K. Hokstad, 2011, *TIV contrast source inversion of mCSEM data*: Geophysics 76

T. Wiik, K. Hokstad, B. Ursin and Lutz Mütschard, *Joint inversion of mCSEM and MT data*: submitted to Geophysical Prospecting



22

$$\rho_{a,ij}(\omega) = \frac{1}{\mu_0 \omega} |Z_{ij}(\omega)|^2 \qquad \phi_{ij}(\omega) = \tan^{-1} \left( \frac{\Im \{Z_{ij}(\omega)\}}{\Re \{Z_{ij}(\omega)\}} \right)$$

$$Z_{xx} = Z_{yy} = 0$$

$$Z_{xy} = -Z_{xy}$$

$$I - D \qquad \qquad \left( \begin{array}{c} E_x \\ E_y \end{array} \right) = \left( \begin{array}{c} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{array} \right) \left( \begin{array}{c} B_x \\ B_y \end{array} \right)$$

$$\left. \begin{array}{c} Z_{xx} = -Z_{yy} \\ Z_{xy} \neq Z_{xy} \end{array} \right\} 2 - D$$

$$\left. \begin{array}{c} Z_{xx} \neq Z_{yy} \\ Z_{xy} \neq Z_{xy} \end{array} \right\} 3 - D$$





28°



#### Motivation

SE

