Experimental study to investigate porosity, permeability and velocity development in silt-clay mixtures

Nazmul Haque Mondol UiO-NGI

Outline

- Background
- Materials and Methods
- Results & Discussion
- Concluding remarks

Background

UNIVERSITY OF OSLO

Ĥ

Ideal packing model

Marion et al., 1992

Fractional packing model

Bimodal mixtures

Porosity-permeability-clay content

Porosity-permeability-clay content

Porosity, permeability and velocity development in mechanically compected silt-clay mixtures.

Relationship between microfabric and rock properties.

Outline

• Background

- Materials and Methods
- Results & Discussion
- Concluding remarks

Sample selection

Silt (100%) Silt (75%), Clay (25%) Silt (50%), Clay (50%) Silt (25%), Clay (75%) Clay (100%)

Synthetic Brine

Sample selection

✓ Silt (100%)

Silt (92.5%), Clay (7.5%) Silt (85%), Clay (15%) Silt (75%), Clay (25%) Silt (65%), Clay (35%) Silt (52.5%), Clay (42.5%) Silt (50%), Clay (50%) Silt (42.5%), Clay (57.5%) Silt (35%), Clay (65%) Silt (25%), Clay (75%) Silt (15%), Clay (85%) Silt (7.5%), Clay (92.5%) ✓ Clay (100%)

Synthetic Brine

Specimen detail

Kaolinite 81% Illite/Mica 14% Microcline 5%

Quartz 99%

Lithology	Grain size (mm)	
Sand	2.0-0.063	
Silt	0.063-0.0039	
Clay	< 0.0039	

Rock mechanical testing

SEM image analysis

X-ray syncroton image analysis

Outline

- Background
- Materials and Methods
- Results & Discussion
- Concluding remarks

Stress-porosity

Mondol, 2009

Stress-porosity

Porosity-clay content

Permeability-clay content

UNIVERSITY OF OSLO

Vp-clay content

Microfabric analysis

Voltolini et al., 2009

Orientation of minerals

Fawad et al., 2010

Micofabric & RP

Micofabric & RP

Anisotropy of P-wave velocity

Thomsen parameters

Outline

- Background
- Materials and Methods
- Results & Discussion
- Concluding remarks

Concluding remarks

• Experimental compaction shows that porosity, permeability and velocity in silt-clay mixtures vary greatly as functions of framework composition, mineral fractions and textural relations (size & sorting).

Concluding remarks

- Experimental compaction shows that porosity, permeability and velocity in silt-clay mixtures vary greatly as functions of framework composition, mineral fractions and textural relations (size & sorting).
- To estimate porosity, velocity and hydraulic properties in siltclay mixtures should not only consider porosity but also must consider grain size, type, amount and distribution of the clays.

Concluding remarks

- Experimental compaction shows that porosity, permeability and velocity in silt-clay mixtures vary greatly as functions of framework composition, mineral fractions and textural relations (size & sorting).
- To estimate porosity, velocity and hydraulic properties in siltclay mixtures should not only consider porosity but also must consider grain size, type, amount and distribution of the clays.
- Extrapolation of experimental results to natural must be done with caution since this study is based exclusively on mechanical compaction of silt-clay mixtures and does not consider any sand, OM and other clays (e.g. smectite & chlorite), chemical diagenesis, maturation of organic matter and overpressure.

Acknowledgements

Stiffness tensors

Nomenclature

			Lithology	Grain size (mm)
			Very Coarse Sand	2.0-1.0
			Coarse Sand	1.0-0.5
Lithology	Grain size (mm)		Medium Sand	0.5-0.25
Sand	2.0-0.063		Fine Sand	0.25-0.125
Silt	0.063-0.0039	\backslash	Very Fine Sand	0.125-0.063
Clay	< 0.0039		Coase Silt	0.063-0.031
			Medium Silt	0.031-0.0156
			Fine Silt	0.0156-0.0078
			Very Fine Silt	0.0078-0.0039
			Clay	< 0.0039

