Effect of anelastic sands layers on R/T responses of a periodically layered medium

Bastien Dupuy Alexey Stovas

Idea

- Paper of Alexey Stovas and Bjørn Ursin on: Equivalent timeaverage and effective medium for periodic layers, Geophysical Prospecting, 2007
- ➔ The reflection and transmission (R/T) responses from a layered periodic medium are frequency-dependent. This dispersion and attenuation of the effective medium is controlled by the layering and the medium parameters.
- What could happen if we mix the frequency dependence due to the layering with the one coming from patchy saturated porous media ?

Two scales of periodicity

➔ Both can affect wave propagation (dispersion, attenuation...) at seismic frequencies (1 to 1000 Hz)

Layout

Model

Layers 1 = shales V_p = 2550 m/s V_s = 1450 m/s ρ = 2300 kg/m³

Elastic

Layers 2 = partially saturated sandstones Gas saturation = 10 %

> Patchy saturation: ANELASTIC OR Equivalent medium: ELASTIC

3 porosity models (= 3 levels of dispersion)

 $\begin{array}{lll} \varphi = 32 \ \% & \varphi = 40 \ \% & \varphi = 50 \ \% \\ V_{p} = 2211 \ m/s & V_{p} = 2256 \ m/s & V_{p} = 2346 \ m/s \\ V_{s} = 1227 \ m/s & V_{s} = 1282 \ m/s & V_{s} = 1358 \ m/s \\ \rho = 2144 \ kg/m^{3} & \rho = 2007 \ kg/m^{3} & \rho = 1837 \ kg/m^{3} \end{array}$

P-wave dispersion and attenuation

 $V_{\scriptscriptstyle P}$ dispersion between 1.5 % and 5 %

 Q_p max between 25 and 100

Computation of R/T responses

Propagator matrix for 1 cycle (2 layers):

$$\mathbf{S}_{k}(\boldsymbol{\omega}) = \frac{1}{1 - r^{2}(\boldsymbol{\omega})} \begin{pmatrix} e^{i\theta_{1}} & 0 \\ 0 & e^{-i\theta_{1}} \end{pmatrix} \begin{pmatrix} 1 & r(\boldsymbol{\omega}) \\ r(\boldsymbol{\omega}) & 1 \end{pmatrix} \begin{pmatrix} e^{i\theta_{2}(\boldsymbol{\omega})} & 0 \\ 0 & e^{-i\theta_{2}(\boldsymbol{\omega})} \end{pmatrix} \begin{pmatrix} 1 & -r(\boldsymbol{\omega}) \\ -r(\boldsymbol{\omega}) & 1 \end{pmatrix}$$

 $r(\omega) = reflection coefficient$ $t_1 and t_2(\omega) = traveltimes$ $\theta_1 and \theta_2(\omega) = phase factors$

$$\begin{aligned} r(\omega) &= \frac{\rho_2 V_2(\omega) - \rho_1 V_1}{\rho_2 V_2(\omega) + \rho_1 V_1} ,\\ \theta_1 &= \frac{2\pi f d_1}{V_1} = 2\pi f t_1 ,\\ \theta_2(\omega) &= \frac{2\pi f d_2}{V_2(\omega)} = 2\pi f t_2(\omega) , \end{aligned}$$

Equations valid for P- or S-waves independently

Reflection coefficients

Computation of R/T responses

Propagator matrix for 1 cycle (2 layers):

$$\mathbf{S}_{k}(\boldsymbol{\omega}) = \frac{1}{1 - r^{2}(\boldsymbol{\omega})} \begin{pmatrix} e^{i\theta_{1}} & 0\\ 0 & e^{-i\theta_{1}} \end{pmatrix} \begin{pmatrix} 1 & r(\boldsymbol{\omega})\\ r(\boldsymbol{\omega}) & 1 \end{pmatrix} \begin{pmatrix} e^{i\theta_{2}(\boldsymbol{\omega})} & 0\\ 0 & e^{-i\theta_{2}(\boldsymbol{\omega})} \end{pmatrix} \begin{pmatrix} 1 & -r(\boldsymbol{\omega})\\ -r(\boldsymbol{\omega}) & 1 \end{pmatrix}$$

Total response for m cycles:

$$\mathbf{S}_{m}(\omega) = \prod_{k=1}^{m} \mathbf{S}_{k} = \begin{pmatrix} a_{m}(\omega) & b_{m}(\omega) \\ & & \\ c_{m}(\omega) & d_{m}(\omega) \end{pmatrix}$$

Transmission $t_D(\omega)$ and reflection $r_D(\omega)$ responses for a downgoing wave:

$$t_D(\omega) = \frac{1}{d_m(\omega)},$$

 $r_D(\omega) = \frac{b_m(\omega)}{d_m(\omega)}.$

R/T responses for m=4 and ϕ =32%

Anelastic sand layersElastic sand layers (no dispersion)

R/T responses (ϕ =32%)

R/T responses (m=4)

Frequency (Hz)

R/T responses differences (m=4)

 $---- \phi = 40 \%$ $---- \phi = 50 \%$

Time domain responses

R/T time responses (ϕ =32%)

R/T time responses (φ=32%): reflected events for m=1 and m=2

Elastic sand layers (no dispersion)

R/T time responses (φ=32%): resonance for m=4 and m=8

R/T time responses (φ=32%): effective medium for m=16 and m=32

R/T time responses differences

R/T time responses differences (m=4)

R/T time responses differences (m=32)

Conclusions

- <u>3 porosity models</u> = 3 levels of dispersion → dispersion and attenuation peak frequency around 50 Hz
- Frequency domain:
 - The differences between anelastic and elastic R/T responses increase when porosity increases
 - The layering generally dominates the responses (for realistic porosities)
 - The number of resonance peaks is higher when the number of cycles decreases. These peaks are more pronounced when m increases.
 - If we consider weaker contrast between the 2 layers (here, rP is about 0.11 to 0.17), the effect of anelasticity could be stronger.

Conclusions

• <u>Time domain:</u>

- Typical elastic behavior: reflected events, resonance system and then, effective medium are observed when m increases.
- On the contrary to frequency domain results, the anelasticity has a strong influence on the amplitude of responses

→ Important conclusion when we deal with seismic interpretation of a layered system: the dispersion and attenuation of the effective R/T responses are not only due to the layering and can be controlled by intrinsic anelasticity of layers.

Acknowledgements:

- The ROSE project for financial support

- <u>Bibliography:</u>
 - Stovas and Ursin (2003). *Reflection and transmission responses of a layered transversely isotropic visco-elastic media*, GP
 - Pride, Berryman and Harris (2004). Seismic attenuation due to wave-induced flow, JGR
 - White (1975), Computed seismic speeds and attenuation in rocks with partial gas saturation, Geophysics
 - Dupuy and Stovas (2014). Reflection and Transmission Responses of a Periodic Layered Medium Constituted by Shales and patchy Saturated Sands, EAGE expanded Abstract 2014

V_P with respect to the porosity

P-wave velocity 4000 3500 (s/ш) 3000 d 2500 50 % 40 % 32 % 2000 0.1 0.3 0.2 0.4 0.5 Porosity

Model

Layers 1 = shales V_p = 5500 m/s V_s = 3000 m/s ρ = 2700 kg/m³

Elastic, frequency-independent

Layers 2 = partially saturated sandstones Gas saturation = 10 %

```
Patchy saturation: frequency-dependent
OR
Equivalent elastic layer: frequency-
independent
```

K_s	(GPa)	40			
$ ho_s$	(kg/m^3)	2690			
m		1			
ϕ		0.32			
k_0	(m^2)	$9 \ 10^{-10}$			
K_D	(GPa)	4 3 3.01 0.13			
G_D	(GPa)				
K_{f_1} (water)	(GPa)				
K_{f_2} (gas)	(GPa)				
$ \rho_{f_1} $ (water)	(kg/m^3)	1055			
$ \rho_{f_2} (\text{gas}) $	(kg/m^3)	336 0.001 0.00004			
η_1 (water)	(Pa.s)				
$\eta_2 \ (\text{gas})$	(Pa.s)				
a	(cm)	1			
V_1		0.1	0.2	0.8	0.9
V_P	(m/s)	2085	2077	2107	2192
V_S	(m/s)	1259	1253	1197	1189
V_{Biot}	(m/s)	580	640	311	414
Q_P		74	70	94	153
Q_S		44	39	44	39
Q_{Biot}		1.70	1.57	0.83	0.72
ρ	(kg/m^3)	1960	1983	2121	2144
f_c	(Hz)	7.3	8.1	22	32

Computation of R/T responses

Propagator matrix for 1 cycle (2 layers):

$$\begin{split} \mathbf{S}_{k}(\omega) &= \frac{1}{1 - r^{2}(\omega)} \begin{pmatrix} e^{i\theta_{1}} & 0 \\ 0 & e^{-i\theta_{1}} \end{pmatrix} \begin{pmatrix} 1 & r(\omega) \\ r(\omega) & 1 \end{pmatrix} \begin{pmatrix} e^{i\theta_{2}(\omega)} & 0 \\ 0 & e^{-i\theta_{2}(\omega)} \end{pmatrix} \begin{pmatrix} 1 & -r(\omega) \\ -r(\omega) & 1 \end{pmatrix} \\ \mathbf{S}_{k}(\omega) &= \begin{pmatrix} a_{k}(\omega) & b_{k}(\omega) \\ c_{k}(\omega) & d_{k}(\omega) \end{pmatrix}, \\ \mathbf{S}_{k}(\omega) &= \frac{1}{t_{1}t_{2}(\omega)} \left(e^{i(\theta_{1} + \theta_{2}(\omega))} \left(1 - r^{2}(\omega)e^{-2i\theta_{2}(\omega)} \right) \right) \end{pmatrix}, \\ b_{k}(\omega) &= \frac{1}{t_{1}t_{2}(\omega)} \left(-re^{i(\theta_{1} + \theta_{2}(\omega))} + r(\omega)e^{i(\theta_{1} - \theta_{2}(\omega))} \right) , \\ c_{k}(\omega) &= \frac{1}{t_{1}t_{2}(\omega)} \left(re^{i(\theta_{1} - \theta_{2}(\omega))} - r(\omega)e^{-i(\theta_{1} + \theta_{2}(\omega))} \right) , \\ c_{k}(\omega) &= \frac{1}{t_{1}t_{2}(\omega)} \left(e^{-i(\theta_{1} + \theta_{2}(\omega))} - r(\omega)e^{-i(\theta_{1} + \theta_{2}(\omega))} \right) , \\ d_{k}(\omega) &= \frac{1}{t_{1}t_{2}(\omega)} \left(e^{-i(\theta_{1} + \theta_{2}(\omega))} \left(1 - r^{2}(\omega)e^{2i\theta_{2}(\omega)} \right) \right) . \end{split}$$