
1

FULL-WAVEFORM INVERSION

Mike Warner
Imperial College London

Practicalities and Progress

Outline

• Overview of full-waveform inversion

• Towed-streamer field example

• OBC field example, pre-processing, validation

• Other parameters

• Method

• Pitfalls and practicalities

• Quality assurance

• New directions

• Q & A



2

Full Waveform Inversion

• Method for generating high-resolution high-fidelity 
models of physical properties in the subsurface

• Seeks a model which can predict the entire recorded 
wavefield, wiggle-for-wiggle

• Has become practical for 3D field datasets within the 
last few years

− software advances

− hardware advances

Full Waveform Inversion

• Generates high-resolution model of physical 
properties

• In principle any property that affects seismic data is 
possible:

− p-wave attenuation

− p-wave anisotropy

− s-wave velocity

− density

− elastic anisotropy

− anelastic anisotropy

• Commercially → p-wave velocity
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RTM with tomography model

3600 m depth

RTM with FWI model

3600 m depth
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Full Waveform Inversion

Most of what you know about conventional imaging will 
not apply to FWI workflows

• uses low frequencies

• uses transmitted arrivals

• iterative inversion from starting model

• details can be critical → does not fail elegantly

Travel-time tomography

• travel times

• ray theory

• cheap

• robust

• low resolution

~ Fresnel zone

~

~ 700 m

d
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• raw wavefield

• wave theory

• expensive

• still developing

• high resolution

~ half wavelength

~ λ / 2

~ 140 m

Full Waveform Inversion

• uses primary reflections only

• does not deal with multiples

• does not deal with transmitted arrivals

• semi-quantitative imaging

• needs a velocity model

• details may not be critical

Reverse Time Migration
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• uses the entire unprocessed wavefield

• inverts the multiples

• inverts the transmitted arrivals

• fully-quantitative inversion

• builds the velocity model

• details can be vital

Full Waveform Inversion

Practicalities

• FWI is not yet robust

• Requires an accurate starting model

− local minima
− cycle skipping

• Careful QC is essential

• Synthetic testing desirable

• Different implementations and practitioners 
will affect outcomes
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Applications

• Shallow
− drilling hazards
− land statics → dynamic corrections

• Intermediate
− depth migration through 

heterogeneous overburden
− delineation of salt flanks

• Deep
− applied directly at the reservoir

Cost

• Full 3D acoustic FWI

− commercialised and affordable 

− with TTI anisotropy

• Lower in cost/hardware than RTM

− many iterations

− but reduced bandwidth

− compute scales as at least n4
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back scattered:  reflected 
impedance contrasts

forward scattered: refracted 
velocity tomography 

Two types of Imaging

Migration and Tomography

FWI uses both reflected and transmitted data:

− tomography from forward-scattered waves 

− depth migration of back-scattered waves

Refractions → macro-velocity model 

Reflections → impedance contrasts 
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Refraction vs Reflection FWI

There are currently two ways to formulate FWI:

• Use all incident angles to build a velocity 
model at all length scales
− needs wide-angle, refracted, long-offset data 

• Use near-normal-incident reflections to build a
band-limited impedance model
− reflection FWI needs a simple structure, 

clean data, and a superb starting model

Acquisition for FWI

• Long offsets

− 3 to 6 times target depth necessary

• Low frequencies

− 2 to 3 Hz desirable 

• Many azimuths desirable

− narrow azimuth possible

• Dense acquisition not necessary
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Common FWI workflow

1. Conventional acquisition, processing, 
model building & depth imaging

2. Use FWI to improve velocity model in top 
~ 2 km of heterogeneous overburden

3. Re-migrate using RTM with the shallow 
FWI velocity model 

FWI recovers shallow 
heterogeneity for deeper 
depth migration

Heterogeneous overburden
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Field example

Samson Dome, Barents Sea

Morgan et al, 2013. Next-generation seismic experiments. 
Geophysical Journal International, 195, 1657–1678.

Data courtesy of BG-Group and PL 534 partners

Samson Dome, Barents Sea

• Complex geological setting:
− Faulted dome + erosional unconformity overlain by Quaternary 

• FWI area  ~ 1000 km2

• Acquisition parameters:
− 10 streamers, 6km cable, 100m cable separation, 

12.5m flip-flop, no low-cut in recording system, 
shot depth 5m, receiver depth 7m

• Pre FWI processing:
− Swell noise attenuation, linear radon de-noise, 

bandpass 2-7 Hz
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Field example

Tommeliten

Warner et al (2013)  Anisotropic 3D full-waveform inversion. 
Geophysics, 78, No 2, R59-R80.

Data courtesy of ConocoPhillips and PL 044 partnership

N

Tommeliten
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Tommeliten

• 4-component OBC 

• invert pressure data

• Vp model above reservoir

• shallow gas

• low velocities

• high attenuation

• significant anisotropy 

3D OBC field data

• 4C OBC
• 3 swaths of 8 cables
• 75 m water depth

• 6 km cables
• 25 m receiver spacing
• 300 m cable spacing
• 6000 receivers

• 25 m shot interval
• 75 m shot-line spacing
• 100,000 shots

• full azimuth to 7000 m
• max offset 11,000 m
• 180 sq km

acquisition geometry
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PP PSDM

PZ-summed  – deghosted and demultipled

PP PSDM

PZ-summed  – deghosted and demultipled
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PP PSDM

PZ-summed  – deghosted and demultipled

Raw shot record

hydrophone only  – include all ghosts and multiples
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Picking the starting frequency

2.4Hz 3.0Hz 3.6Hz

single‐frequency phase

common receiver gather

Picking the starting frequency
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Pre-processing

• No deghost

• No demultiple

• No debubble

• No wavelet shaping

• No low-cut filter

• No deconvolution

• No PZ sum

• No AGC

• No divergence correction

Usually essential to return to raw field data

Scholte waves at lowest frequencies

hydrophone
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Pre-processing

• Mute ahead of first breaks

• Mute Scholte waves

• Truncate to 5500 ms

• Cut frequencies above 8 Hz

• Delete three quarters of receivers

• Delete two thirds of sources

• Delete offsets < 100 m

• Delete geophones, retain hydrophones only

• Apply source-receiver reciprocity

Most of this is to reduce compute time, and 
to avoid adding noise into the inversion

Raw shot record

hydrophone
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Pre-processed for acoustic FWI

hydrophone

Pre-processing

Surface streamer data:
− remove swell noise

− low-frequency de-noise

− shape amplitude spectrum to boost lowest frequencies

Land data:
− compensate geophone roll-off at low frequency

− remove shear-waves, converted waves, surface waves

− remove local noise sources

− surface consistent wavelet

− interpolate additional sources

− convert geophones to hydrophones
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Starting model

reflection tomography

Starting model

reflection tomography
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Source wavelet

Contractor’s wavelet vs Near-source OBH

Full bandwidth Low-pass filtered

Wavelet

• Low-frequency wavelet

• Same zero-time as pre-processed data

• Same filters as pre-processed data

• Wavelet with no source ghost

• Can be non-causal
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Inversion parameters

• Time domain, acoustic 3D, VTI anisotropy

• Hydrophones only → include ghosts and multiples 

• Apply reciprocity

• 6000 → 1440 sources
• 80 sources per iteration

• Six frequency bands from 3.0 → 6.5 Hz
• 18 iterations per frequency
• Each source used once per frequency

• Amplitude equalisation

• Conjugate gradients

• Approximate diagonal Hessian

Starting model

reflection tomography
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FWI model

full-waveform inversion

Starting model

reflection tomography
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FWI model

full-waveform inversion

FWI results

250 m depth

from homogeneous 
start model

horizontal
depth slice
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FWI results + original PSDM

250 m depth

from homogeneous 
start model

horizontal
depth slice

Starting model

well log

1200 m 
depth
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FWI model

1200 m 
depth

well log

PSDM

1200 m 
depth

well log
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Field data

Field data

Start model

Start model data

Field data
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FWI model

FWI model data

Field data

Match to Synthetics
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64

65
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RTM with PSDM model

3600 m depth

RTM with FWI model

3600 m depth
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Other parameters

69

Field data – site survey

Hicks & Pratt (2001)  Geophysics, v66, p598.



34

70

Acoustic wavefield tomography

Hicks & Pratt (2001)  Geophysics, v66, p598.

71

Attenuation tomography

Hicks & Pratt (2001)  Geophysics, v66, p598.



35

Elastic FWI:  P-wave
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Difficulties with elastic FWI

• S-wave starting model

• Cross talk to p-wave velocity

• Cross talk to density & attenuation

• Elastic anisotropy – s-wave splitting

• Compute cost 

Elastic FWI

• Genuine elastic inversion is difficult…

…but is possible on 3D hydrophone data

• For p-wave RTM…

… not clear that elastic FWI is helpful

• For reservoir characterisation…

… need elastic, anisotropy & attenuation
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Pitfalls & Practicalities

Pitfalls

• local minima

• cycle skipping

• inadequate low frequencies 

• inadequate starting model

Essential that starting model is not cycle skipped
− low frequencies

− high-quality start model

− rigorous QC



38

model

best estimate 
of new model

start model

Local inversion

m
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m
is

fit
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local 
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Local inversion

the local minimum 
may be a worse 

model, but it 
provides a better 
match to the data
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Free surface strategy

• The free surface:
− generates ghosts

− generates free-surface multiples

− suppresses direct arrival

• Must match field data and FWI modelling

Free surface strategy

Marine: put free surface in model, 
use deghosted source, 
leave all multiples in data,
leave all ghosts in data,
get the seabed correct.

Land: put absorbing boundary in model,
remove free-surface multiples from data,
include ghosts and remnant multiples in

the source wavelet,
deal with synthetic direct arrival.
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Insufficient offset

• Without long offsets:

FWI → least-squares reverse-time migration

FWI strategy

• low → high frequencies

• smooth → rough

• shallow → deep

• refractions → reflections

• phase → amplitude

• early → late arrivals

• primaries → multiples

• acoustic → elastic

• use variable sub-set of sources each iteration

QC often

Test with 
synthetics
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Workflow

• choose the right problem & acquire the right data

• determine start frequency

• build start model + anisotropy

• check adequacy of model, wavelet & field data

• pre-process & reduce data volume

• modelling & inversion strategy

• run FWI with QA

• check synthetic against field data

• check geometry, wells, image gathers,…

• run RTM on broadband reflection data

Quality Assurance
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Quality assurance

• Is start model adequate?
• Is offset adequate?

• FWI result:
− synthetics match field data
− match improves
− geometry matches reflectors
− flattens gathers
− matches wells
− migrates reflections

Cycle skipping in FWI

Cycle skipping is the main limitation on FWI

• drives requirement for low frequencies

• drives requirement for good start model

• limits applicability

• requires rigorous QC & QA

• can lead to (unsuspected) 
spurious results
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Quality assurance

• Given the data that we have, is the 
starting model good enough?

• Are we converging towards the 
global minimum?

Common QC tools  in FWI

• data residuals decrease

• correlation with field data increases

• time-domain data match

• FWI model and PSDM image correlate

• flat gathers & improved RTM

• model is geologically plausible

All of these can fail to detect cycle skipping 
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QC for cycle skipping

Generate phase residual plots at starting frequency:

• for start model

• after one iteration

• after final iteration

• for all offsets and azimuths

• for many sources/receivers 

Phase residual is the phase difference between observed 
and predicted data (NOT the phase of the residual)

Phase residual in full-azimuth survey 

180°‐180°
Phase

COMMON RECEIVER GATHER

red means 
model is 
too fast
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Phase residual in narrow-azimuth survey

so
u
rc
e 
x

receiver xstacking diagram for one cable 
and one sail line

‐180°

+180°

3Hz phase residual – shallow water OBC

cycle skipped

cycle skipped
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‐180°

+180°

3Hz phase residual – start model

‐180°

+180°

3Hz phase residual – after 1 iteration

CYCLE‐SKIPPED REGION SHRINKS
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‐180°

+180°

3Hz phase residual – after 18 iterations

CYCLE‐SKIPPED REGION VANISHED

Start After 108 iterations

FWI result – 250 m

20001700
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Start After 108 iterations

FWI result

1450 2350

Start After 108 iterations

FWI result – 1200 m

1700 2300
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good model bad model?

‐180°

+180°

3Hz phase residual 

‐180°

+180°

CYCLE‐SKIPPED REGION SHRINKS CYCLE‐SKIPPED REGION GROWS

3Hz phase residual - after 1 iteration 

good model bad model 
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‐180°

+180°

3Hz phase residual – after 18 iterations 

good model bad model

GLOBAL MINIMUM LOCAL MINIMUM

20001700

FWI result - after 108 iterations

good model bad model



52

1450 2350

GLOBAL MINIMUM LOCAL MINIMUM

FWI result - after 108 iterations

good model bad model

GLOBAL MINIMUM LOCAL MINIMUM

1700 2300

FWI result - after 108 iterations

good model bad model
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QA during FWI is essential & easy

Conclusion

Implementation
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Implementation

• Efficient wave propagator
− 3D, heterogeneous, two-way, wave equation

• Appropriate physics
− acoustic, visco-acoustic, anisotropic, elastic

• Numerical method
− finite differences, finite elements, spectral elements

• Domain
− time, frequency, hybrid, Laplace, Fourier-Laplace

Implementation – time domain

• CPU proportional to 
− model size  ~n3

− number of time steps  ~n

− number of sources  ~N

• So  CPU ~n4N
− maximise grid spacing

− maximise time step

− minimise number of sources

− minimise local domain
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Implementation – time domain

• parallelised on multi-core clusters

• one source per node

• multiple cores per source

• feasible on GPUs

Implementation – resources

• RAM and CPU for explicit-time and iterative-
frequency are similar

• TTI anisotropy – RAM & CPU × 2

• Elastic – RAM & CPU × 10 to 1000
(depends upon Vp/Vs)



56

Implementation – resources

• Run on clusters of multi-core workstations

• Parallelised using Posix threads or OpenMP

• Parallelised using MPI

• Forward modelling on single workstation

• Similar hardware to RTM

Future directions
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Future directions

• apply to reservoir

• extend to all acquisition geometries and datasets

• overcome starting model limitations

• more robust & effective FWI

• beyond acoustic
− elastic, anisotropic, fractures, fluids

• integrate with rock physics & CSEM

• statics → dynamics

• resolution & uncertainty analysis

• modified acquisition

• replace velocity model building, RTM, AVO & DHI
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