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Elastic plane wave incident on a planar interface: 

• Stresses are continuous across the boundary. 
• Particle displacements are continuous across the 

boundary. 

Zoeppritz equations for 
transmission and reflection 
coeffcients 

Horizontal slowness is preserved 
(Snell’s law) 





Aki & Richards 

Shuey 

These assume that the contrast in properties across the boundaries 
is small (say < 10%). They are NOT small angle approximations. 
 
Fatti, Bortfeld, Hilterman ... Mostly make assumptions, small angles, 
Gardner for density, Vp/Vs is some known value. 
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Two-term Shuey 
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OK’ish for incidence angles up to 30 
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Aki & Richards v exact equations 

Aki and Richards 3 term equation is a small contrast approximation, 
not a small angle approximation. 
The two term equations assume small angles and small contrasts. 

Class 1 Class 2 Class 2p 

Class 3 Class 4 

Real parts plotted, 
Aki & Richards red, 
Exact solution blue 



Aki & Richards v exact equations Absolute error integrated over range 0 – 0.75 critical 

angle (or 72) for fixed density contrast. 
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Suppose that there are velocity contrasts across the boundary, but no 
impedance contrasts (the density compensates). 
Then reflectivity is zero – small at low to moderate incidence angles 
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Now suppose that there are impedance contrasts across the boundary, but 
no velocity contrasts (the density compensates). 
Then reflectivity is non-zero at low to moderate incidence angles 

Near-mid angle reflections are caused by impedance contrasts, not velocity 
contrasts. 
Should invert for impedances, not for velocities. 



Impedance contrasts cause back-scattering (reflections) whereas 
velocity  contrasts cause forward scattering. 

Wu & Aki, 1985, Geophysics 



The information in the data is the same, but you won’t get the same 
answers if you use different equations for the fitting then calculate 
the same physical quantities. 



Fit a straight line to the amplitudes v sin2 : 
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Assume we are equally spaced in sin2 and there are no 
negative offsets, then 
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n is fold 
xr is sin2max - sin2min 

xm is (sin2max + sin2min )/2 
2 is the data noise variance  
   

If the near angle is zero (or close) 
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If the near angle is zero (or close) 
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For reasonably high fold, 

 
n

rdevstd
2

0̂  Twice the std dev of the stack 

 
n

gdevstd


max
2sin

32
ˆ 

 
2

3
ˆ,0̂ grcorr

14 times the std dev of the 
stack for max = 30 



Similar analysis is intractable for the 3 term fit. However we still expect 
the maximum incidence angle to be the key controlling parameter. 

Maximum incidence angle (degrees) 

Standard 
deviations of the 
parameter 
estimates 
expressed as a 
multiplier of the 
stack standard 
deviation 

3 term curvature 

3 term gradient 

2 term gradient 

2 & 3 term intercept 



Similar analysis is intractable for the 3 term fit. However we still expect 
the maximum incidence angle to be the key controlling parameter. 

Maximum incidence angle (degrees) 

Correlation 
coefficients between 
parameters 

3 term intercept & curvature 

2 term intercept & gradient 
3 term gradient & curvature 

3 term intercept & gradient 



Maximum incidence angle (degrees) 

log10(condition 
number) 

3 term fit 

2 term fit 

106 computer precision 



In least-squares curve fitting, outliers in the data exert excessive 
leverage on the solutions. 
Robust methods diminish the influence of outliers. 

Walden, A.T., 1991, Making AVO sections more robust, 
Geophysical Prospecting, 39, 915-942 



It reduces correlations between parameters compared to least-
squares. 
But the condition number is worse. 
 
Does it help with 3 term fit? 
NO 



Two kinds of effect: 
 
1) Kinematic. Overburden anisotropy changes the offset-

angle mapping at the target. A smooth anisotropy model 
is needed from the surface down to the target. 
 

2) Dynamic. At the target, the AVA response depends on 
the anisotropy of upper and lower layers. 



Velocity is angle-dependent: 

  422
0 sincossin1)(  PP VV

Overburden anisotropy changes the offset-angle relationship. 

The angle axis is stretched depending on anisotropy 
Wrong gradient (& curvature) 



Anisotropic PP reflection coefficients, Vp, Vs,  fixed in both layers 

 = -0.2  

 = 0.0  

 = 0.2  

 = -0.2   = 0.0   = 0.2  



Anisotropic PP reflection coefficients, Vp, Vs,  fixed in both layers 

 = -0.2  

 = 0.0  

 = 0.2  

 = -0.2   = 0.0   = 0.2  
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Isotropic Shuey 

Anisotropic (Rüger) 
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 controls the mid-angle reflectivity and modifies 
the AVA gradient 
 influences the higher angles and affects the 
curvature. 



 Seismic data 

• No multiples or mode conversions 

• Relative amplitudes are correct 

• Stationary wavelet 

• Wavelet is known 

• No residual moveout 

• Data are correctly positioned (migrated) 

 

 Geology 

• Horizontal, plane layers 

• Very slow lateral velocity variation 

• Thin-bed effects are not too significant 

 

 Wave propagation 

• Plane wave reflection coefficients 

• (Small angle assumptions) 

• Approximations to Zoeppritz 

• No significant scattering 

 

 Inversion 

• Noise is uncorrelated, iid 

• Linearised 

• Regularisation -> Solution is smooth 
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Take a fixed angle and integrate over depth 
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We have assumed that Vs/Vp is constant with depth! 
Take exponential: 
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This can be done with the two term equation as well. 
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This can be done with the two term equation as well. 
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 is a non-physical angle used to make combinations of the 
elastic properties. Particular choices of  can be made to 
maximise sensitivity to fluids or to lithologies. 



Minimise the misfit between data and synthetics by adjusting model. 
Constraints may be used to control model values or relationships 
between them (for example, use Gardner as a soft constraint on 
density). 
There is often an assumption of model smoothness, which further 
stabilises the inversion. 
Some form of background model is needed to supply low frequency 
information. 
 
 

Frequency 

seismic 

Background 
model 



Geostatistical methods (eg Dubrule et al) 
Bayesian (Buland et al) 
Various sampling methods (MCMC, simulated annealing, etc) 

Aim is to get better idea of uncertainty & ambiguity in the results.   

Frequency 

seismic 

Background 
model 

Can explore the range of 
possible high frequency 
models. Needs geological 
insight. 



Relate elastic properties to lithology and fluid properties through 
rock physics models, empirical relationships, and probabilistic 
models. (Buland et al, Coleou et al, many others ...) 
 
Typically porosity, saturation, Vshale are the properties of 
interest. 
Results can include probabilistic facies classifications. 
 
Since they include uncertainties they are useful for risk analysis. 
 


