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AVO

Elastic plane wave incident on a planar interface:

 Stresses are continuous across the boundary.
 Particle displacements are continuous across the
boundary.
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Zoeppritz equations for
transmission and reflection
coeffcients

Horizontal slowness is preserved
(Snell’s law)




Zoeppritz equations




Simplifications of Zoeppritz equations

Aki & Richards
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These assume that the contrast in properties across the boundaries
is small (say < 10%). They are NOT small angle approximations.

Fatti, Bortfeld, Hilterman ... Mostly make assumptions, small angles,
Gardner for density, Vp/Vs is some known value.




Simplifications of Zoeppritz equations

Two-term Shuey
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OK’ish for incidence angles up to 30°
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AVO Classes
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Simplifications of Zoeppritz equations

Aki & Richards v exact equations

Class 2

Class 3

Class 4

Class 2p

Real parts plotted,
Aki & Richards red,
Exact solution blue

Aki and Richards 3 term equation is a small contrast approximation,
not a small ang/e approximation.
The two term equations assume small angles and small contrasts.




Simplifications of Zoeppritz equations

Absolute error integrated over range 0 - 0.75 critical

Aki & Richards v exact equations
9 angle (or 72°) for fixed density contrast.
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Simplifications of Zoeppritz equations

Integrated absolute

Absolute error reflection coefficient
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Simplifications of Zoeppritz equations
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Simplifications of Zoeppritz equations
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Simplifications of Zoeppritz equations
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Scattering

Impedance contrasts cause back-scattering (reflections) whereas
velocity contrasts cause forward scattering.
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FiG. 29. Same as Figure 28, for velocity type heterogeneity.

Fi. 28, Scattering patterns of a Gaussian heterogeneity of
impedance type for different frequencies. The upper half-plane
is for P-P, the lower half-plane is for P-S.

Wu & Aki, 1985, Geophysics




Simplifications of Zoeppritz equations

The information in the data is the same, but you won’t get the same
answers if you use different equations for the fitting then calculate
the same physical quantities.




Curve fitting

Fit a straight line to the amplitudes v sin? 0:
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Curve fitting

If the near angle is zero (or close)
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Curve fitting: 2 term v 3 term

Similar analysis is intractable for the 3 term fit. However we still expect
the maximum incidence angle to be the key controlling parameter.
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Curve fitting: 2 term v 3 term

Similar analysis is intractable for the 3 term fit. However we still expect
the maximum incidence angle to be the key controlling parameter.
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Curve fitting: 2 term v 3 term condition
numbers

10

. i
3 term fit

log;(condition 106 computer precision

number) 6 |

2 term fit

0 | | | !
10 0 30 40 50 h)

Maximum incidence angle (degrees)



Robust curve fitting

In least-squares curve fitting, outliers in the data exert excessive
leverage on the solutions.

Robust methods diminish the influence of outliers.
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Fi1G. 5. Comparison of AVO intercept and slopes estimated by least-squares and by the
robust technique on seismic data set 1. The upper panel shows a section of the gather and the
lower panel shows rescaled amplitudes at t = 3.644 s plotted against sin® 6; the marked lines
are fitted by least-squares (L) and robustly (R). The CMPs are (a) 770 and (b) 772.

Walden, A.T., 1991, Making AVO sections more robust,
Geophysical Prospecting, 39, 915-942



Robust curve fitting

It reduces correlations between parameters compared to least-
squares.
But the condition number is worse.

Does it help with 3 term fit?
NO




Anisotropy

Two kinds of effect:

1) Kinematic. Overburden anisotropy changes the offset-
angle mapping at the target. A smooth anisotropy model
is needed from the surface down to the target.

2) Dynamic. At the target, the AVA response depends on
the anisotropy of upper and lower layers.




Anisotropy: Kinematic effect

Velocity is angle-dependent:

Ve (9) = VoL + Ssin2 Icos? 9 + sin’ 9

Overburden anisotropy changes the offset-angle relationship.

The angle axis is stretched depending on anisotropy
Wrong gradient (& curvature)



Anisotropy: Dynamic effect

Anisotropic PP reflection coefficients, Vp, Vs, p fixed in both layers
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Anisotropy: Dynamic effect

Anisotropic PP reflection coefficients, Vp, Vs, p fixed in both layers
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Anisotropy: Dynamic effect

Isotropic Shuey
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Anisotropic (Ruger)
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& controls the mid-angle reflectivity and modifies
the AVA gradient

¢ influences the higher angles and affects the
curvature.



Assumptions

4

Seismic data

No multiples or mode conversions
Relative amplitudes are correct
Stationary wavelet

Wavelet is known

No residual moveout

Data are correctly positioned (migrated)

Geology

Horizontal, plane layers

Very slow lateral velocity variation
Thin-bed effects are not too significant

Wave propagation

Plane wave reflection coefficients
(Small angle assumptions)
Approximations to Zoeppritz

No significant scattering

Inversion

Noise is uncorrelated, iid

Linearised

Regularisation -> Solution is smooth




Elastic Impedance Inversion
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Take a fixed angle and integrate over depth
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We have assumed that Vs/Vp is constant with depth!
Take exponential:
El(9:2,) = [ R (z,) ]Cl[ R,(z,) jcz [ Rs(2) JC3
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This can be done with the two term equation as well.




Elastic Impedance Inversion
coa-(] (o) (76

This can be done with the two term equation as well.
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Extended elastic impedance
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Veo Lo Vso

¥ is a non-physical angle used to make combinations of the
elastic properties. Particular choices of y can be made to
maximise sensitivity to fluids or to lithologies.




Prestack AVA Inversion

Minimise the misfit between data and synthetics by adjusting model.
Constraints may be used to control model values or relationships
between them (for example, use Gardner as a soft constraint on
density).

There is often an assumption of model smoothness, which further
stabilises the inversion.

Some form of background model is needed to supply low frequency
information.

Background
model

seismic

Frequency




Stochastic AVA Inversion

Geostatistical methods (eg Dubrule et al)
Bayesian (Buland et al)

Various sampling methods (MCMC, simulated annealing, etc)

Aim is to get better idea of uncertainty & ambiguity in the results.

Can explore the range of
Baih?,;‘;”.”d possible high frequency
seismic ,— models. Needs geological
insight.

Frequency




Inversion for lithology & fluid properties

Relate elastic properties to lithology and fluid properties through
rock physics models, empirical relationships, and probabilistic
models. (Buland et al, Coleou et al, many others ...)

Typically porosity, saturation, Vshale are the properties of
interest.
Results can include probabilistic facies classifications.

Since they include uncertainties they are useful for risk analysis.




