Thermally induced compaction of shales

Andreas Bauer, Leni Marøen¹, Jørn Stenebråten, Eyvind F. Sønstebø SINTEF, Trondheim, Norway

> Rune M. Holt NTNU and SINTEF, Trondheim, Norway

¹ present address: ConocoPhillips, Stavanger, Norway

We acknowledge our sponsors:

BP, ConocoPhillips, Det norske, Dong Energy, GDF SUEZ, Shell, Statoil, and Total

SINTEF Petroleum Research

What we learn in physics:

Solids expand upon heating and retract upon cooling

Heat expansion

Heat expansion and thermal stresses have a large impact on borehole stability and caprock integrity

However ...

- Heating may result in phase transitions, or nonreversible processes that involve an activation energy (chemical reactions, mechanical processes on the atomic scale)
- Rock compaction is visco-plastic (creep behavior), and creep processes may be accelerated at increased temperature

SINTEF Petroleum Research

Thermally induced compaction in clay

- Thermal compaction of reconstituted clay (Ghahremannejad, 2003): Largely plastic behaviour during initial heating, elastic behaviour during cooling and reheating
- Stress history dependent thermal behaviour of kaolin clay during heating; initial consolidation at 0.6 MPa (Cekerevac and Laloui, 2004)

Degree of compaction depends on overconsolidation ratio

Thermally induced compaction in caprock shale

B. Xu, Y.G. Yuan, and Z.C. Wang (2011)

- Thermal contraction of watersaturated Clearwater Shale (10–30% clay content) during drained heating to 75°C and 150°C.
- Sample stiffness and strength increase (for slow heating rates, allowing for pore pressure equilibration)

At SINTEF we perform extensive rock-mechanical testing of field shales within the Shale Rock Physics JIP and the Dynamic Borehole Stability JIP

For competent, (over-)consolidated caprock shales, we expected negligible or small thermally-induced compaction for temperatures around in-situ temperature

Test results reveal large compaction upon heating at temperature at or below in-situ temperature

Experimental procedure:

- Shale core plugs fully saturated and brought to in-situ stress condition
- Stepwise heating
- Strains and ultrasonic velocities recorded as a function of time
- Cooling to room temperature

- Heating/cooling cycle results in \succ 0.8% volumetric compaction
- Creep behavior (primary, secondary, and tertiary creep)
- Compaction is also reflected \geq by increase in ultrasonic velocities v_{P} and v_{S}

🕥 SINTEF

SINTEF Petroleum Research

General features are the same for all shales:

- Heat expansion is followed by compaction (primary creep), with the compaction rate increasing with temperature (compaction may partly be explained by drainage effects)
- Reduction of compaction rate until a constant creep rate is established (secondary creep)
- Acceleration of compaction rate after a certain time (tertiary creep)
- Asymmetry between axial and radial strain
- Velocity increase (1) upon cooling is reversible; reason for relatively large, reversible velocity changes (both v_p and v_s) is not understood

Reversible temperature dependence of ultrasonic velocities of Shales

- Apply Gassmann model
- Assume linear temperature dependence of dry-rock stiffness:

 $K \downarrow dry = K \downarrow dry, 0 \quad (1 - C \downarrow K \cdot \Delta T) \quad G \downarrow dry = G \downarrow dry, 0 \quad (1 - C \downarrow G \cdot \Delta T)$

Good fit can be obtained by selecting the right temperaturesensitivity coefficients; physics not understood yet

Thermally-induced compaction in Pierre shale (outcrop)

- Volumetric compaction of 6.5% induced by heating to 120°C
- Strong increase in compaction for T ≥ 80°C
- ➤ Temperature dependence of creep rates is consistent with Arrhenius law for thermally activated processes ($\propto e^{2} - E^{\downarrow a} / k^{\downarrow B} T$)
- ➢ Strong increase in v_P
- velocity decrease (\$) during consolidation phase at 120°C possibly caused by rock failure at large strains
- Velocity increase (1) upon cooling

Thermally-induced compaction in Pierre shale (outcrop)

Heat-induced compaction

Stress-induced compaction

- Nearly linear dependence of v_P on vol. strain
- Volumetric-strain dependence comparable to that measured during hydrostatic loading, suggesting that velocity changes are mainly controlled by volumetric strain (porosity changes).
- Field shales: volumetric-strain dependence of velocities during heat-induced compaction is by a factor 3 – 9 smaller than during hydrostatic loading, suggesting that heat-induced compaction has a different impact on the microscopic rock structure than stress increments

Thermally-induced compaction of Pierre shale (outcrop)

- Heating to 120°C in one step
- Observation of characteristic creep behavior at constant stress and temperature
- Irreversible volumetric compaction of 5.1%, which corresponds to a porosity reduction from 19.2% to 14.1%
- Irreversible increase of v_P by 423 m/s (17.6%)

Summary of test results

		porosity	Clay	Smectite	o' _{conf}	Т	T _{in-situ}	$\Delta \epsilon_{_{ m vol}}$	Δ_{V_p}	Δ_{V_s}
		[%]	[wt%]	[wt%]	[MPa]	[[°] C]	[[°] C]	[%]	[m/s]	[m/s]
Pierre shale	test 1	19,2	57,4	31,5	2	120		5,1	423	-
(outcrop)	test 2	19,2	57,4	31,5	2	120		6,5	330	-
Field shales	#1	34,2	64	0	4,9	90	74	0,38	6	-
	#2	20	56	29	8,2	71	50	0,8	32	10
	#3	18,6	65	53	10,5	75	75	[≈] 1,34	≈ 49	[≈] 42
	#4	5	69	0	19,1	90	103	1,2	110	-

- Very large thermally-induced compaction (ε_{vol} > 5%) for outcrop shale at 120°C
- > Large thermally-induced compaction (ε_{vol} > 1%) for field shales #3 and #4 at temperatures at or below in-situ temperature
- No apparent correlation with initial porosity, smectite content, or applied stress
- Large compaction observed even in a highly compacted, lowporosity shale (shale #4)

Possible reasons for thermally-induced compaction in shale core plugs at or below in-situ temperature

 Core damage: (micro-)cracks formed during core retrieval might not get closed again upon re-establishing the in-situ stress state. Heat may enhance crack healing.

<u>Relevance for field applications</u>: Damage zone around borehole

2. Heat-rate effects: For high heat rates, pore pressure builds up in the rock as a result of fluid expansion and slow drainage, which can result in shear or tensile rock failure. Typical pore-pressure changes: ≈ 0.2 MPa/°C.

<u>Relevance for field applications</u>: In shales, heat diffusion is generally faster than pore-pressure diffusion; rock failure as a result of pore-pressure increase is a likely to happen for large enough heating

Possible reasons for thermally-induced compaction in shale core plugs at or below in-situ temperature

3. Brine chemistry: Samples are exposed to synthetic brine, which might result in rock weakening for not perfectly matched brines <u>Relevance for field applications</u>: Drilling fluids may alter visco-plastic properties of surrounding shale formations

Summary

- Laboratory tests with core plugs of 5 different shales exhibit sizable compaction (up to > 1% volumetric strain) upon heating accompanied by increases in ultrasonic velocities
- Temperature are not high enough to cause chemical changes (e.g. smectite-illite transitions)
- Possible explanations for observed compaction include core damage, heat-rate effects, and brine-chemistry effects
- Thermally-induced compaction of shales may have strong impact on field applications such as steam injection

Backup slides

SINTEF Petroleum Research

- - - -

Temperature dependence of ultrasonic velocities of Shales

- Apply Gassmann model
- Assume temperature-independent dry-rock modulus

Gassmann model predicts much weaker temperature dependence and wrong trend at low temperatures

SINTEF Petroleum Research

Temperature dependence of ultrasonic velocities of Shales

- Apply SINTEF's RP model
- Assume that temperature dependence of bulk and shear stiffness of bound water is the same as that of ice

The Shale RP model provides a better description than the Gassmann model (for temperature independent dry-rock stiffnesses) but still underpredicts the temperature dependence of Vp and Vs (except for shale #2 where a good match of the Vs data is obtained).

Temperature dependence of ultrasonic velocities of Shales

- Apply Gassmann model
- Assume linear temperature dependence of dry-rock stiffness:

 $K \downarrow dry = K \downarrow dry, 0 \quad (1 - C \downarrow K \cdot \Delta T) \quad G \downarrow dry = G \downarrow dry, 0 \quad (1 - C \downarrow G \cdot \Delta T)$

Good fit can be obtained by selecting the right temperaturesensitivity coefficients; physics not understood yet

