Seismic Imaging of vertical thin pipes

B. Arntsen, H. Lødemel, W. Weibull and. E. Raknes

ROSE meeting
May 6, NTNU

Vertical pipes West Africa

Overview

1. Introduction
2. Seismic response of vertical thin pipes
3. Imaging of a vertical thin pipe
4. Real data example
5. Conclusions

Ancient pipe Rhodos

(From Løseth et. al. 2011)

Ancient pipe Rhodos

(From Løseth et. al. 2011)

Vertical pipe schematic view

(From Løseth et. al. 2011)

Modeling of seismic response from a vertical pipe

(From Løseth et. al. 2011)

Seismic response of a vertical pipe

Reflections from from vertical pipe

\longleftarrow Distance \longrightarrow

Depth

Diffractions from layer/pipe intersection

\longleftarrow Distance \longrightarrow

Diffractions from bottom of pipe

\longleftarrow Distance \longrightarrow

Seismic response from pipe

Seismic response from pipe

Time lapse Seismic response from pipe

Peak source frequency: 30 Hz

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
DA2: Direct Reflection from pipe. Water filled pipe

Peak source frequency: 30 Hz

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
Water filled pipe

Peak source frequency: 15 Hz

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
Water filled pipe

Peak source frequency: 15 Hz

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
Water filled pipe

Peak source frequency: 60Hz

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
Water filled pipe

Peak source frequency: 60Hz

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
Water filled pipe

Peak source frequency: 30 Hz

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
Mud filled pipe

Peak source frequency: 30 H

L2: Prismatic reflection D1: Layer/pipe diffraction D2: Bottom diffraction
Mud filled pipe

2D RTM of 20 3D shotgathers

Site survey relief well 2-4/25

Pre drill 1988

Site survey relief well 2-4/25
Post drill 1990

Site survey relief well 2-4/25

Difference between Pre drill 1988 and Post drill 1990

Conclusions

- Natural vertical pipes with diameters of 10-50 meters are visible on conventional 3D seismic data
- Crude finite-difference modeling seem to indicate vertical boreholes with diameters of a few meters are visible at seismic wavelengths
- Images made from site survey data above 2-4/15 relief well show similar features as the synthetic fd-data at the well position and indicates that vertical wells might be visible on seismic data
- The 2-4/15 well might have gas migrating along the outside of the borehole enhancing the visibility

