

Calculating top seal topography from time lapse seismic amplitude maps and comparing with time-depth mapping Anders Kiær (May Gel 2014, ROSE)

Table of contents

Introduction

Introduction Tuning relationship Motivation/goal

2 Method

Fundamental idea Notation Computational method Synthetic case Real case Real case

Average error

G ConclusionsG Acknowledgements

Sleipner CO₂ storage project

Motivation/goal

From Cavanagh (2013) - "Benchmark calibration and prediction of the Sleipner CO₂ plume from 2006 to 2012"

Tuning relationship

Seismic data sets

Min/max solutions

Numbers above each plot show rock volume (10^6 m^3) flooded by CO₂

Introduction Method Synthetic case Real case Conclusions Acknowledgements

Motivation/goal

Earlier work

• Chadwick et al. (2005) - 4D seismic quantification of a growing CO₂ plume at Sleipner, North Sea

Goals

- Estimate thickness maps using seismic amplitude maps.
- Check the assumption of gravity dominated flow at Sleipner.
- Recalculate Top Utsira topography map.

Fundamental idea

Notation

- Positive direction downwards.
- $d_1 = 0$ taken as reference point.

Computational method

If a grid cell (i,j) is interpreted to contain CO₂ at time t_k , we would in the ideal gravity case have that the layer thickness is

$$h_{(i,j,k)} = d_k - \xi_{(i,j)}.$$
 (1)

However, in practice this can be far from true if the model assumptions are invalid or the data is noisy. To cope with this, Equation 1 is not required to be exact.

$$R \equiv \sum_{k=1}^{S} \sum_{(i,j)} \left[d_k - \xi_{(i,j)} - h_{(i,j,k)} \right]^2.$$
 (2)
$$d_1 \le d_2 \le \dots \le d_S.$$
 (3)

Synthetic case

Result

Real case

Real case (topography)

Average error

Conclusions

- A method for estimating CO₂ layer thickness maps is developed and presented for gravity dominated cases.
- CO_2 layer thickness for the topmost layer found to be below the tuning thickness $h_{\rm m}$ everywhere for surveys up to and including 2008. This results supports the assumption done in Chadwick et al. (2005).
- (At least) 85% match between the amplitude maps and a pure gravity model.
- Inverted topography map of Top Utsira is flatter than the depth converted time map, but mutual agreement within uncertainty range.

Acknowledgements

- Statoil and the license partners (ExxonMobil and Total) for relasing information on the CO₂ storage project at Sleipner.
- Statoil for financing my PhD.
- Ola Eiken (QuadGeometrics, former Statoil) and Martin Landrø (NTNU) for helpful comments and suggestions.
- Anne-Kari Furre (Statoil) for help with preparing the seismic data input.