Quantitative analysis of CO₂ saturation at the Snøhvit field from analytical solutions and time lapse seismic data

S. Grude¹, M. Landrø¹ and J. White² ¹NTNU, ²BGS ROSE meeting 5-8th May 2014

BIGCCS International CCS Research Centre

NTNU – Trondheim Norwegian University of Science and Technology

Objective

Quantify initial 400 ktons of CO₂ injected in the Tubåen 1 sand layer based on analytical solution and two time lapse seismic methods

Outline

- Reservoir fluid flow
- Analytical estimate of CO₂ plume
- CO₂ plume quantification from time lapse seismic data
 - Inverted from amplitude versus offset (AVO)
 - Spectral decomposition
- Conclusions

Tubåen formation, Snøhvit field

- Faults East-West, injection zone ~2 500 m wide
- 2.67 km depth, ~110m thick
- 500 ktons injected from April 2008 to Sept 2009
- Tubåen 1-4 sand layers, separated by shale
- CO₂ migrated into Tubåen 1 sand (80%), and Tubåen 2 and 3 sand layer (20%)
- Will focus on the Tubåen 1 sand layer

Time lapse reflectivity and noise level

- 1D Synthetic seismograms for increasing thickness of time lapse effect
- Time lapse seismic reflectivity noise level approximately 0.007
- CO₂ layer above ~3m detectable

Multiphase CO₂ flow on a short time scale

Capillary pressure

- Laboratory measurements on core plugs from the Tubåen 3 sand layer (courtesy Statoil)
- Low capillary entry pressure
- Low capillary pressure at residual water saturation

Analytical estimate of the CO₂ plume

		Tubåen 1	
Thickness	h	14	m
Porosity	Φ	0.19	fraction
Permability	k	750	mD
Relative permeability of CO_2	$k_{r,CO2}$	0.7^{1}	fraction
Residual water saturation	S_{wi}	0.13 ²	fraction
Injected volume	$Q \times t$	400	ktons
Mobility ratio	λ	6	
Gravity factor	Г	0.6	

¹ No laboratory measurement available from Tubåen 1. Based on comparison with laboratory measurements of the relative permeability on three composite cores from 2735m measured depth (mD) and published literature (<u>Bennion and Bachu, 2008</u>) ² Estimated from (<u>Sengupta, 2000</u>)

Analytical estimate of the CO₂ plume

www.ntnu.edu

Pressure-saturation discrimination from spectral decomposition

- Assume CO₂ thin layers, pressure more extensively
- Different vertical extents tune different frequencies in seismic wavelet
- 25 Hz cut-off separate the pressure and saturation changes

(c) Peak > 25 Hz

Pressure

Saturation

White et al., 2014

Pressure-saturation discrimination from time lapse AVO seismic

- Introduced by Landrø (2001)
- Exploits time-lapse nearand far offset seismic stacks as independent measurements
- Invert for fluid- and pressure related changes in seismic amplitude
- Thin layer tuning correction of saturation effect

Thickness of time lapse effect(m)

CO₂ saturation from time lapse seismic

AVO

0.20 0.15 0.1005 0.00

Spectral decomposition

CO₂ saturation inverted from time lapse AVO seismic

Comparions with analytical estimates

11% of injected CO₂ below noise level

Summary CO₂ saturation and radius of plume

	Maximum observable radius, m	Maximum CO_2 saturation, [frac]
Analytical solution	375	0.87
Time lapse AVO	3631	0.83^{2}
Time lapse Spectral	4701	
decomposition		

¹In channel direction (SE-NW) ² After thin layer tuning correction

Discussion

- Early injection times, stratigraphic and structural trapping
- Later: Dissolution of CO₂ in brine, evaporation of brine into the dry CO₂ and mineral trapping dominant trapping mechanisms
- Assume constant injection-rate into confined, homogeneous, isotropic and saline aquifer, wrong for fluvial environment?
- Uncertainty in capillary pressure (core plug measurements representative for large scale?)

Conclusions

- Viscous dominated fluid flow
- Wedge shaped CO₂ plume
- Thinning of wedge below time lapse noise level (<3m CO₂)
- Spectral decomposition indicate tuning of time lapse saturation effect, and pressure communication with the surroundings
- Plume radius from analytical solution comparable to average radius from time lapse seismic
- CO₂ saturation from time lapse seismic in good agreement with analytical solution after thin layer scaling, with a
 partially patchy fluid distribution in the pore space

Acknowledgments

- Statoil and their partners Petoro, Total E&P Norge, GDF SUEZ E&P Norge and RWE Dea Norge AS for permission to use the Snøhvit data
- Bård Osdal is thanked for providing data and information regarding the Snøhvit Field
- This publication has been produced with support from the BIGCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, ConocoPhillips, Gassco, Shell, Statoil, TOTAL, GDF SUEZ and the Research Council of Norway (193816/S60)
- The financial support from NFR to the ROSE consortium
- Jon Kleppe and Ole Torsæter for discussions regarding reservoir fluid flow
- Jan M. Nordbotten for the analytical code

Backup-slides

Spectral decomposition: Pore pressure and fluid substitution changes generated during CO_2 injection

- a) Baseline wavelet
- b) 15 m layer where CO₂ has replaced brine
- c) 36 m thick pore pressure anomaly
- d) Baseline spectral response
- e) Red line- spectral content of the reflected energy following fluid substitution changes. Blue line- the same spectra normalised by the baseline response. The peaks define the tuning frequency for the top and base reflection. Peak frequency of ~29 Hz. Corresponds to a temporal thickness of 17 ms.
- f) Red line- spectral content of the reflected energy following pore pressure changes. Blue line- the same spectra normalised by the baseline response. The peaks define the tuning frequency for the top and base reflection. Peak frequency ~17 Hz, equivalent to temporal thickness of 30 ms. The second peak frequency at 51 Hz corresponds to the 2nd tuning harmonic.

Analytical estimate of the CO₂ plume

