Introduction	MIWSM	Experiment	000000000	Conclusions and ruture work
	$\mathbf{\Gamma}\mathbf{NU}$ tion and Creativity			
	Modelin v	g of trans vaves in la	mitted and ref yered media	flected
	A. Tantsereva D.	a, B. Ursin, N. Komatitsch ar	Favretto-Cristini, I nd A.M. Aizenberg	P. Cristini,

22. april 2013 ROSE meeting

<<u>□</u> → <<u>□</u> → <<u>⊇</u> → <

≣ ▶

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work
		Ou	tline	

1 Introduction

2 Multiple Tip-Wave Superposition Method

3 Experiment

- Numerical modeling
 Narrow-beam experiment
 Broad-beam experiment
 - Source Conclusions and future work

Introduction MTWSM Experiment Numerical modeling Conclusions and future work

イロト 不得 とうほう イヨン

3

1 Introduction

2 Multiple Tip-Wave Superposition Method

3 Experiment

Numerical modeling Narrow-beam experiment Broad-beam experiment

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work
		Ou	tline	

э

1 Introduction

2 Multiple Tip-Wave Superposition Method

3 Experiment

Numerical modeling

 Narrow-beam experiment
 Broad-beam experiment

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work
		Ou	tline	

イロト 不得 とくほ とくほう

Introduction

2 Multiple Tip-Wave Superposition Method

3 Experiment

- 4 Numerical modeling
 - Narrow-beam experiment
 - Broad-beam experiment

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work
		Ou	tline	

・ロト ・ 何ト ・ ヨト ・ ヨト

э

Introduction

2 Multiple Tip-Wave Superposition Method

3 Experiment

- 4 Numerical modeling
 - Narrow-beam experiment
 - Broad-beam experiment

		Mat	wation	
Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work

- ► 3D seismic modeling is an important tool today.
- Difficulties in simulating 3D wave propagation due to the presence of shadow zones, head waves, diffractions and edge effects.

イロト 不得 とくほ とくほとう

э

• How to check the validity of the results?

Synthetic data vs. Laboratory data

 Numerical seismic modeling carried out using the multiple version of the Tip-wave Superposition Method (Ayzenberg et al., 2007 Geophysics 72)

・ロト ・ 行下・ ・ 日 ・ ・ 日 ・

 Laboratory data obtained in the Laboratoire de Mécanique et d'Acoustique in Marseille, France (N. Favretto-Cristini, P. Cristini) for zero-offset experiment in a water tank

Synthetic data vs. Laboratory data

 Numerical seismic modeling carried out using the multiple version of the Tip-wave Superposition Method (Ayzenberg et al., 2007 Geophysics 72)

・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ ト

 Laboratory data obtained in the Laboratoire de Mécanique et d'Acoustique in Marseille, France (N. Favretto-Cristini, P. Cristini) for zero-offset experiment in a water tank

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work	
Outline					

イロト イポト イヨト イヨト

э

Introduction

2 Multiple Tip-Wave Superposition Method

3 Experiment

Numerical modeling Narrow-beam experiment

- Droad beem experiment
- Broad-beam experiment
- **5** Conclusions and future work

MTWSM Conclusions and future work Introduction Experiment Numerical modeling

Multiple Tip-Wave Superposition method

Introduction MTWSM Experiment Numerical modeling Conclusions and future work

Multiple Tip-Wave Superposition Method

Superposition of events according to their wavecodes

$$p(\mathbf{x}^{r}) = p^{(1)}(\mathbf{x}^{r}) + p^{(3)}(\mathbf{x}^{r})$$
(1)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Combination of surface integral propagators P and R/T operators

$$p^{(1)}(\mathbf{x}^r) = \mathbf{P}_{1\mathbf{x}^r} \langle \mathbf{R}_{11} \langle p^{(0)} \rangle \rangle, \qquad (2)$$

$$p^{(3)}(\mathbf{x}^{r}) = \mathbf{P}_{1\mathbf{x}^{r}} \left\langle \mathbf{T}_{12} \mathbf{P}_{21} \left\langle \mathbf{R}_{22} \mathbf{P}_{12} \left\langle \mathbf{T}_{12} \left\langle p^{(0)} \right\rangle \right\rangle \right\rangle, \qquad (3)$$

where $\mathbf{P}(s, s')\langle ... \rangle = \frac{1}{4\pi} \iint_{\Sigma} \left[\frac{\partial G(\mathbf{s}; \mathbf{s}')}{\partial \mathbf{n}} \langle ... \rangle - G(\mathbf{s}; \mathbf{s}') \frac{\partial}{\partial \mathbf{n}} \langle ... \rangle \right] d\Sigma$ is the propagation operator inside the layer, R and T are the R/T operators at the interfaces.

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work

Multiple Tip-Wave Superposition Method

Approximations:

- 1. R/T operators approximated by R/T coefficients $\hat{\mathbf{R}}$ and $\hat{\mathbf{T}}$.
- 2. Interfaces split into small elements, propagation operators approximated by propagation matrices L_{12} and L_{21}

Then

$$p^{(1)}(\mathbf{x}^{r}) \approx P_{1\mathbf{x}^{r}} \cdot R_{11} \cdot p^{(0)}, \qquad (4)$$

$$p^{(3)}(\mathbf{x}^{r}) \approx P_{1\mathbf{x}^{r}} \cdot L_{12} \cdot L_{21} \cdot T_{12} \cdot p^{(0)}, \qquad (5)$$

where scalar elements of layer matrices L_{12} and L_{21} are represented by the tip-wave beams

$$\Delta \mathbf{L} = R/T \cdot \Delta \mathbf{P} = R/T \cdot \left(\frac{-ik}{2\pi} \frac{\Delta \Sigma}{R} \cos \Theta e^{ikR}\right). \tag{6}$$

Introduction MTWSM Experiment Numerical modeling Conclusions and future work

MTWSM algorithm

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work	
Attenuation					

- Characterized by the quality factors Q_p and Q_s .
- ▶ Has two different effects on the propagating wave fields:
 - Decrease in amplitude and broadening of a pulse.
 - Change of the impulse shape as reflection/transmission coefficients are functions of the Q-contrast between media.

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work	
Attenuation					

- Characterized by the quality factors Q_p and Q_s .
- ► Has two different effects on the propagating wave fields:
 - Decrease in amplitude and broadening of a pulse.
 - Change of the impulse shape as reflection/transmission coefficients are functions of the Q-contrast between media.

イロト 不得 とくほ とくほとう

э

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work		
Attenuation						

- Characterized by the quality factors Q_p and Q_s .
- ► Has two different effects on the propagating wave fields:
 - Decrease in amplitude and broadening of a pulse.
 - Change of the impulse shape as reflection/transmission coefficients are functions of the Q-contrast between media.

イロト 不得 とくほ とくほとう

э

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work	
Attenuation					

- Characterized by the quality factors Q_p and Q_s .
- ► Has two different effects on the propagating wave fields:
 - Decrease in amplitude and broadening of a pulse.
 - Change of the impulse shape as reflection/transmission coefficients are functions of the Q-contrast between media.

ヘロト 人間 とくほとく ほとう

3

Assumption: attenuation is strictly linear with frequency over the seismic frequency range (1-200 Hz)

• complex number $k(\omega) = \frac{\omega}{c(\omega)} = \frac{\omega}{c_p(\omega)} + i\alpha(\omega)$

• phase velocity $\frac{1}{c_p(\omega)} = \frac{1}{c_r} + \frac{1}{\pi c_r Q_r} \ln \left| \frac{\omega_r}{\omega} \right|$

• attenuation $\alpha(\omega) = \frac{|\omega|}{2c_r O_r}$

where c_r and Q_r are the values of c_p and Q_p at the reference frequency ω_r .

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

 Introduction
 MTWSM
 Experiment
 Numerical modeling 000000000
 Conclusions and future work

 Kolsky-Futterman model (Kolsky, 1956; Futterman, 1962)

Assumption: attenuation is strictly linear with frequency over the seismic frequency range (1-200 Hz)

• complex number
$$k(\omega) = \frac{\omega}{c(\omega)} = \frac{\omega}{c_p(\omega)} + i\alpha(\omega)$$

• phase velocity
$$\frac{1}{c_p(\omega)} = \frac{1}{c_r} + \frac{1}{\pi c_r Q_r} \ln \left| \frac{\omega_r}{\omega} \right|$$

• attenuation
$$\alpha(\omega) = \frac{|\omega|}{2c_r Q_r}$$

where c_r and Q_r are the values of c_p and Q_p at the reference frequency ω_r .

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

 Introduction
 MTWSM
 Experiment
 Numerical modeling 000000000
 Conclusions and future work

 Kolsky-Futterman model (Kolsky, 1956; Futterman, 1962)

Assumption: attenuation is strictly linear with frequency over the seismic frequency range (1-200 Hz)

• complex number
$$k(\omega) = \frac{\omega}{c(\omega)} = \frac{\omega}{c_p(\omega)} + i\alpha(\omega)$$

• phase velocity
$$\frac{1}{c_p(\omega)} = \frac{1}{c_r} + \frac{1}{\pi c_r Q_r} \ln \left| \frac{\omega_r}{\omega} \right|$$

• attenuation $\alpha(\omega) = \frac{|\omega|}{2c_r O_r}$

where c_r and Q_r are the values of c_p and Q_p at the reference frequency ω_r .

・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ ト

 Introduction
 MTWSM
 Experiment
 Numerical modeling 000000000
 Conclusions and future work

 Kolsky-Futterman model (Kolsky, 1956; Futterman, 1962)

Assumption: attenuation is strictly linear with frequency over the seismic frequency range (1-200 Hz)

• complex number
$$k(\omega) = \frac{\omega}{c(\omega)} = \frac{\omega}{c_p(\omega)} + i\alpha(\omega)$$

• phase velocity
$$\frac{1}{c_p(\omega)} = \frac{1}{c_r} + \frac{1}{\pi c_r Q_r} \ln \left| \frac{\omega_r}{\omega} \right|$$

• attenuation
$$\alpha(\omega) = \frac{|\omega|}{2c_r Q_r}$$

where c_r and Q_r are the values of c_p and Q_p at the reference frequency ω_r .

・ロト ・ 行下・ ・ 日 ・ ・ 日 ・

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and fu	ture work
		Ou	tline		
1 Intr	oduction				
2 Mul	tiple Tip-W	ave Superposi	ition Method		
3 Exp	eriment				```
 4 Num • N • B 	nerical mod arrow-beam road-beam e	eling experiment xperiment			
G Con	clusions and	l future work			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

Introduction MTWSM Experiment Numerical modeling Conclusions and future work

\

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work

Properties of the materials

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work

Narrow-beam transducer

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and future work

Broad-beam transducer

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Introduction	MTWSM	Experiment	Numerical modeling	Conclusions and fut	ure work
		Ou	tline		
1 Int	roduction				
2 Mu	ltiple Tip-W	ave Superpos	ition Method		 , , , , , , , , , , , , , , , , ,
3 Exp	periment				````
4 Nu	merical mod	eling			
• N	Varrow-beam	experiment			
• B	Broad-beam e	xperiment			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

イロト イ理ト イヨト イヨト æ

Introduction MTWSM Experiment Numerical modeling Conclusions and future work

Line Y150, traces

イロト イ理ト イヨト イヨト æ

Introduction

Numerical modeling

Conclusions and future work

Line Y250, traces

イロト イ理ト イヨト イヨト æ

Introduction

Experiment

Numerical modeling

Conclusions and future work

Line Y150, traces

イロト イ理ト イヨト イヨト æ

Introduction

Experiment

Numerical modeling

Conclusions and future work

Line Y250, traces

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

\

]	Numerical	comparison	
Introduction	MTWSM	Experiment	Numerical modeling ○○○○○○○●	Conclusions and future work

Similarity factor
$$F = 2 \cdot \frac{\sum_{t} s_1(t) \cdot s_2(t)}{\sum_{t} s_1^2(t) + \sum_{t} s_2^2(t)}$$
.

	Line	Source 1	Source 2
NB	Y150	0.9729	0.9450
	Y250	0.9076	0.9299
BB	Y150	0.91860	0.8367
	Y250	0.9158	0.9389

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへぐ

Numerical simulations of wave propagation in layered medium using the MTWSM.

- Laboratory measurements of reflected ultrasonic waves for narrow-beam and broad-beam transducers.
- Comparisons indicate a good quantitative fit in time arrivals and amplitudes.
- Multi-offset seismic experiments using sources with unfocused beam and 3D array receivers covering the entire model.

- Numerical simulations of wave propagation in layered mediumusing the MTWSM.
- Laboratory measurements of reflected ultrasonic waves for narrow-beam and broad-beam transducers.
- Comparisons indicate a good quantitative fit in time arrivals and amplitudes.
- Multi-offset seismic experiments using sources with unfocused beam and 3D array receivers covering the entire model.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Numerical simulations of wave propagation in layered mediumusing the MTWSM.
- Laboratory measurements of reflected ultrasonic waves for narrow-beam and broad-beam transducers.
- Comparisons indicate a good quantitative fit in time arrivals and amplitudes.
- Multi-offset seismic experiments using sources with unfocused beam and 3D array receivers covering the entire model.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Numerical simulations of wave propagation in layered medium using the MTWSM.
- Laboratory measurements of reflected ultrasonic waves for narrow-beam and broad-beam transducers.
- Comparisons indicate a good quantitative fit in time arrivals and amplitudes.
- Multi-offset seismic experiments using sources with unfocused beam and 3D array receivers covering the entire model.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction MTWSM Experiment Numerical modeling Conclusions and future work

Acknowledgements

We thank INSIS Institute of the French CNRS, the Aix-Marseille University, the Carnot Star Institute, Statoil Petroleum AS and the Norwegian Research Council through the ROSE project for financial support and Stephan Devic (LMA Marseille) for making the Marseille model.

