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Motivation

I 3D seismic modeling is an important tool today.
I Difficulties in simulating 3D wave propagation due to the

presence of shadow zones, head waves, diffractions and edge
effects.

I How to check the validity of the results?
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Synthetic data vs. Laboratory data

I Numerical seismic modeling carried out using the multiple
version of the Tip-wave Superposition Method (Ayzenberg et al.,
2007 Geophysics 72)

I Laboratory data obtained in the Laboratoire de Mécanique et
d’Acoustique in Marseille, France (N. Favretto-Cristini, P.
Cristini) for zero-offset experiment in a water tank
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Multiple Tip-Wave Superposition Method

I Superposition of events according to their wavecodes

p(xr) = p(1)(xr) + p(3)(xr) (1)

I Combination of surface integral propagators P and R/T operators

p(1)(xr) = P1xr
〈
R11〈p(0)〉

〉
, (2)

p(3)(xr) = P1xr

〈
T12P21

〈
R22P12

〈
T12〈p(0)〉

〉〉〉
, (3)

where P(s, s′)〈...〉 = 1
4π

∫∫
Σ

[
∂G(s;s′)
∂n 〈...〉 − G(s; s′) ∂∂n 〈...〉

]
dΣ

is the propagation operator inside the layer,
R and T are the R/T operators at the interfaces.
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Multiple Tip-Wave Superposition Method

Approximations:

1. R/T operators approximated by R/T coefficients R̂ and T̂.

2. Interfaces split into small elements, propagation operators
approximated by propagation matrices L12 and L21

Then

p(1)(xr) ≈ P1xr · R11 · p(0), (4)

p(3)(xr) ≈ P1xr · L12 · L21 · T12 · p(0), (5)

where scalar elements of layer matrices L12 and L21 are represented
by the tip-wave beams

4L = R/T · 4P = R/T ·
(
−ik
2π
4Σ

R
cos ΘeikR

)
. (6)
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MTWSM algorithm
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Attenuation

I Characterized by the quality factors Qp and Qs.

I Has two different effects on the propagating wave fields:

� Decrease in amplitude and broadening of a pulse.

� Change of the impulse shape as reflection/transmission
coefficients are functions of the Q-contrast between media.
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Kolsky-Futterman model (Kolsky,1956; Futterman, 1962)

Assumption: attenuation is strictly linear with frequency over the
seismic frequency range (1-200 Hz)

I complex number k(ω) = ω
c(ω) = ω

cp(ω)
+ iα(ω)

I phase velocity 1
cp(ω)

= 1
cr

+ 1
πcrQr

ln
∣∣ωr
ω

∣∣
I attenuation α(ω) = |ω|

2crQr

where cr and Qr are the values of cp and Qp at the reference frequency ωr.
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Marseille model

Figure: Based on the French model, 1974 Geophysics 39
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Experiment
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Properties of the materials
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Narrow-beam transducer



Introduction MTWSM Experiment Numerical modeling Conclusions and future work

Broad-beam transducer
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Directivity pattern
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Acquisition design
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Line Y150, seismograms
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Line Y150, traces
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Line Y250, seismograms
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Numerical comparison

Similarity factor F = 2 ·
∑

t s1(t)·s2(t)∑
t s2

1(t)+
∑

t s2
2(t)
.

Line Source 1 Source 2

NB Y150 0.9729 0.9450

Y250 0.9076 0.9299

BB Y150 0.91860 0.8367

Y250 0.9158 0.9389
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Conclusions and future work

I Numerical simulations of wave propagation in layered medium
using the MTWSM.

I Laboratory measurements of reflected ultrasonic waves for
narrow-beam and broad-beam transducers.

I Comparisons indicate a good quantitative fit in time arrivals and
amplitudes.

I Multi-offset seismic experiments using sources with unfocused
beam and 3D array receivers covering the entire model.
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