4 D refraction analysis – status and future applications

M. Landrø, NTNU

References

- Landrø, Nguyen and Mehdizadeh, 2004, Time lapse refraction seismic
 a tool for monitoring carbonate fields?, SEG Abstracts, 23, 2295.
- Artola, Batante and Figueiro, **2008**, Time-lapse critical reflection: Does it really work in seismic monitoring of low porosity and high effective stress conditions, RBGf, 26, 327-330.
- Hansteen, Wills, Hornman and Jin, **2010**, Time-lapse refraction seismic monitoring, SEG Abstracts, 20, 4170.
- Hilbich, **2010**, Time-lapse refraction seismic tomography for the detection of ground ice degradation, The Cryosphere, 4, 243-259.
- Zadeh, Landrø and Barkved, **2011**, Long-offset time-lapse seismic: Tested on the Valhall LoFS data, Geophysics, 76, O1-O13.
- Zadeh and Landrø, **2011**, Monitoring a shallow subsurface gas flow by time-lapse refraction analysis, Geophysics, 76, O35-O43.

Time lapse refraction seismic

a tool for monitoring carbonate fields?

by

M. Landrø (NTNU), A. K. Nguyen, (SINTEF) and H. Mehdizadeh, (NTNU)

SEG, 2004

Simple relation between critical offset shift and velocity change

Change in critical offset due to a velocity change in the reservoir layer:

$$\Delta x_c \approx -\frac{\Delta v_2}{v_{RMS}} \frac{v_2}{v_{RMS}} \frac{2z}{\left(\frac{v_2^2}{v_{RMS}^2} - 1\right)^{\frac{3}{2}}}$$

Typical values:

A 50 m/s velocity change => a shift of 170 m

For small velocity changes the reflectivity changes at normal offsets are small – but the shift in critical angle is more pronounced...

The synthetic model:

	Thick- ness (m)	Vp(m/s)	Vs(m/s)	Density (kg/m3)
Water	210	1480	0	1000
Layer 1	800	1700	600	1500
Layer 2	700	1900	1000	1700
Layer 3	500	2000	1400	2000
Reservoir	100	2500 (base) 2550 (model 1) 2600 (model 2)	1800	2200
Half plane	Infinity	2300	1600	2300

2% and 4% velocity increase for TL model 1 and 2

Baseline and difference data

(Finite difference modeling)

RMS (whole trace) versus offset for base and the two monitor surveys – clear shift and amplitude increase observed

Valhall LoFS-data – Example 1

Systematic decrease in X_M from LOFS-1 to LOFS-8

Valhall LoFS-data – Example 2

No change from LOFS-1 to LOFS-6, followed by a significant change

4 D refraction timeshift analysis

4 D refraction timeshift analysis

4D refraction examles: Peace River heavy oil field, Alberta

Hansteen et al., SEG, 2010

4D refraction examle: Peace River heavy oil field, Alberta

Hansteen et al., SEG, 2010

Monitoring ground ice degradation by time-lapse refraction

Hilbich, 2010, The Cryosphere

Hilbich, 2010, The Cryosphere

Well log from Grane field

Time lapse refraction radar

Reservoir monitoring:

- Refractions from top/base reservoir
- Rig source fired every day
- Measure 4D time shifts and amplitudes
- Multiazimuthal analysis

Leakage detection:

- Use shallow refraction to detect shallow gas leakage or abnormal pressure build ups

Crustal monitoring:

- Detect crustal stress changes
- Limited to max refraction depths
- Conventional 4D for this purpose?

Method is sensitive to *velocity* variations

Shot gather – Grane Field, seabed hydrophone data

Water depth: 128 m

Grane: Shallow refraction – lateral variation

Approximately 25 m between each CDP-position

Grane – refracted signals at 5000 m offset, 20 adjacent shots separated by 25 m

Difference between adjacent pairs – shifted by 25 m NRMS = 33 %

Permanent arrays: Source at platform or sparse shooting

Example: a=8 km, b = 24 km and c=1 km => 9 hours shooting

Summary

- 4-5 examples of succesful use of refracted events for 4D analysis
- Clean velocity change estimation
- Complementary to traditional 4D analysis
- Both amplitude and traveltime information useful
- More noise at ultra-long offsets
- Permanent arrays makes it possible to design a time lapse refraction radar monitoring daily changes