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Static & Dynamic Moduli 

• (Quasi-) Static modulus given by 
the slope of a stress-strain curve  

• Dynamic modulus = rv2 given by the 
bulk density r and the wave speed  v 

For uniaxial strain, the static modulus H=dsz/dez should be equal to rvP
2   



Static & Dynamic Moduli: 
Motivation 

 Static mechanical behaviour is needed for several 
engineering applications 
Ø Reservoir compaction & Surface Subsidence (elasticity, plasticity) 
Ø Sand production prediction (strength, plasticity) 
Ø Borehole stability assessment (strength, plasticity) 
Ø Overburden characterization (Cap rock seal; Leakage / fault 

reactivation / fracturing associated with depletion / injection) 
Ø (Gas) Shale reservoir  stimulation: Where to fracture (”Frackability” - 

Brittleness / Fracture toughness); Where do fractures go? 

 Can static properties be estimated from seismic / log 
measurements? 



Static & Dynamic Moduli: 
Equal – and yet Different… 

Ø In solids and fluids static = dynamic moduli 
(Ledbetter, 1993) 
Ø  In rocks they differ, because: 
§ Required static moduli are usually drained ("frame") 

properties, dynamic moduli are undrained 
§ Finite strain in static, infinitesimal strain in dynamic 

measurements 
§ Frequency dependence (dispersion) 
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Typical observation: Castlegate sandstone 
under hydrostatic loding 

Soft, high porosity 
sandstone:  
Kdyn >> Kstat 
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Castlegate sandstone under uniaxial 
strain (K0) loading + un- & re-loading 
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Soft, high porosity 
sandstone:  
Hdyn >> Hstat 

Except during initial 
unloading & initial 

reloading (turning points 
of the stress path) 
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Further discussion in Fjær et al., Rock Mech. & Rock Eng., 2013 
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Laboratory Simulated Core Behaviour of     
Stiff Synthetic Sandstone formed under stress 

Uniaxial Strain (K0) 
Hdyn >> Hstat 

During initial 
unloading & initial 
reloading (turning 
points of the stress 

path) 
- 

Behaves similar to 
Castlegate sst 
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Forming Stress:  
30 MPa axial 
15 MPa confining Epoxy-cemented synthetic sandstone 
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Laboratory Simulated Virgin Behaviour of Stiff 
Synthetic Sandstone formed under stress 
 

Uniaxial Strain (K0) 
Hdyn >> Hstat 

Except during initial 
loading  

 

Forming Stress:  
30 MPa axial 
15 MPa confining 
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Epoxy-cemented synthetic sandstone 
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Laboratory simulated Core & Virgin              
Compaction of Soft Synthetic Sandstone 
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Forming Stress:  
17 MPa axial 
8.5 MPa confining 

Forming Stress:  
11 MPa axial = confining 

Silicate-cemented synthetic sandstone 
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… which leads to the hypothesis 
Ø Static = Dynamic moduli for undamaged rock – 
  which behaves purely elastic 
Ø Cores are "damaged" because of cement bond breakage 

during stress release 
Ø Outcrops are "damaged" because of a.o. weathering  
Ø "Undamaged" rocks within the Earth, after diagenesis and 

before any damaging stress change has occurred, will be 
perfectly elastic 

Ø Strong & stiff rocks should have static = dynamic moduli, for 
weak & soft rocks: static < dynamic stiffness… or? 
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But: Consider uncemented glass beads… 

So:  
For hydrostatically loaded perfectly spherical particles (with narrow size distribution): 
Static = Dynamic Bulk Modulus! 
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Uncemented glass beads in                  
Uniaxial compaction 

Development of 
shear stress 
reduces the 

static modulus 
by grain sliding 

and 
rearrangement 
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Ottawa Sand 

Similar behavior to glass 
beads, but static & 

dynamic moduli become 
more different 

Natural sand is well 
rounded, but not perfect 

spheres  (also broader 
grain size distribution) 
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Mancos Shale 
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6-8 % porosity, 20-30 % clay, very 
competent gas shale analogue 

 
Tested as received; i.e. "wet" 

 
Static drained bulk modulus ~ 5 GPa; 

Uniaxial compaction modulus:              
15 – 20 GPa (20-25 GPa during 

unloading) 
 

Ultrasonic bulk modulus: ~ 25 GPa 
Ultrasonic P-Wave modulus: 

>40 GPa    
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Strain amplitude effects in shale 
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From a triaxial test, the dependence of P and F (”Petroleum Related Rock Mechanics” by 
Fjær et al., 2008) on stress and strain as observed in Mancos Shale is  resemblant to 
that seen in soft sandstones =>       
Strain amplitude correction for shale may be performed in a similar way 
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Mancos shale 
The extrapolated elastic uniaxial 
compaction modulus estimated at 
55 MPa axial (& 18 MPa 
confining) stress corresponds to a 
P-wave velocity of ~ 3315 m/s at 
1 Hz frequency.  
 
The ultrasonic vP is ~ 4165 m/s at 
500 kHz 
 
=> ~ 25 % velocity dispersion  

Based on evidence for 
purely elastic behavior at 
the turning point of a stress 
path (Fjær et al., 2013) 

Data from uniaxial strain (K0) 
unloading of Mancos Shale 



Mancos Shale 

Measured at ambient 
conditions in SINTEF’s 
Low Frequency Quasi-

Static set-up 
 

Strain amplitude ~ 10-6 
 

Confirms dispersion in 
Mancos shale  
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In Mancos Shale, both frequency 
dependence and strain 

amplitude effects contribute to 
the difference between static 

and dynamic moduli 



Concluding remarks 
Ø Static = Dynamic moduli for undamaged (purely 

elastic) non-dispersive rock, and for Hertzian 
granular materials under hydrostatic conditions 
§ "Undamaged" rocks within the Earth, after diagenesis and 

before any damaging stress change has occurred may have 
similar static and dynamic moduli  

§ Unconsolidated sand: May have quite similar static and 
dynamic moduli in hydrostatic conditions 
§ (Gas) Shale: Both dispersion and non-elastic behavior leads 

to static-dynamic discrepancy 
§ If we can distinguish, this may permit determination of plasticity / 

brittleness from seismic data 
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