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Static & Dynamic Modul

* (Quasi-) Static modulus given by « Dynamic modulus = rv2 given by the
the slope of a stress-strain curve bulk density r and the wave speed v
I Stress, o
slope, E
Strain, .

For uniaxial strain, the static modulus H=ds,/de, should be equal to rvy?
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Static & Dynamic Moduli:
Motivation

Static mechanical behaviour is needed for several
engineering applications
@ Reservoir compaction & Surface Subsidence (elasticity, plasticity)
@ Sand production prediction (strength, plasticity)

@ Borehole stability assessment (strength, plasticity)

@ QOverburden characterization (Cap rock seal; Leakage / fault
reactivation / fracturing associated with depletion / injection)

@ (Gas) Shale reservoir stimulation: Where to fracture (”Frackability” -
Brittleness / Fracture toughness); Where do fractures go?

Can static properties be estimated from seismic / log
measurements?
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Static & Dynamic Moduli:
Equal — and yet Different...

@ In solids and fluids static = dynamic moduli
(Ledbetter, 1993)

@ In rocks they differ, because:

§ Required static moduli are usually drained (*'frame")
properties, dynamic moduli are undrained

§ Finite strain in static, infinitesimal strain in dynamic
measurements

§ Frequency dependence (dispersion)
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Typical observation: Castlegate sandstone
under hydrostatic loding
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Castlegate sandstone under uniaxial
strain (K,) loading + un- & re-loading
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Further discussion in Fjeer et al., Rock Mech. & Rock Eng., 2013
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Laboratory Simulated Core Behaviour of
Stiff Synthetic Sandstone formed under stress
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Behaves similar to
Castlegate sst 0

Epoxy-cemented synthetic sandstone



Laboratory Simulated Virgin Behaviour of Stiff
Synthetic Sandstone formed under stress
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Dynamic & Static
Uniaxial Compaction Modulus [GPa]

Laboratory simulated Core & Virgin
Compaction of Soft Synthetic Sandstone
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Silicate-cemented synthetic sandstone
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.. which leads to the hypothesis

@ Static = Dynamic moduli for undamaged rock —

which behaves purely elastic

@ Cores are "damaged" because of cement bond breakage
during stress release

@ Qutcrops are "damaged" because of a.0. weathering

@ "Undamaged" rocks within the Earth, after diagenesis and
before any damaging stress change has occurred, will be
perfectly elastic
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But: Consider uncemented glass beads...

So:

Dynamic & Static Bulk Modulus [MPa]
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For hydrostatically loaded perfectly spherical particles (with narrow size distribution):

Static = Dynamic Bulk Modulus!

25 April 2013

SINTEF

@ NTNU



Uncemented glass beads In
Uniaxial compaction
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Dynamic & Static Bulk Modulus [GPa]
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Mancos Shale

6-8 % porosity, 20-30 % clay, very
competent gas shale analogue

O Dynamic (corrected for anisotropy)
W Dynamic (uncorrected)
—Static

Tested as received:; i.e. "wet"

N
0+ — Static drained bulk modulus ~ 5 GPa,;
Isotropic Stress [MPa) Uniaxial compaction modulus:
— %0 1 .ggzzmgg:i?\tléc;?i?ri\r;g&repeated loading 15 - 20 GPa (20-25 GPa dU”ng
o  Static - 1st loading .
I(_Dl X Static - unloadlng&repevated Ioadlng R Un|Oad|ng)
20 e, s e
E . ,
g E . Ultrasonic bulk modulus: ~ 25 GPa
X X (& X ><>><<><><3E .
3 20 ..j...ﬁ. - "‘m . Ultrasonic P-Wave modulus:
= P T >40 GPa
a .
O I I I 1
20 30 40 50 60

Axial Stress [MPa]

SINTEF ®NTNU



Strain amplitude effects in shale
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From a triaxial test, the dependence of P and F (’Petroleum Related Rock Mechanics” by
Fjeer et al., 2008) on stress and strain as observed in Mancos Shale is resemblant to

that seen in soft sandstones =>

Strain amplitude correction for shale may be performed in a similar way
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Mancos shale

Data from uniaxial strain (K,) The extrapolated elastic uniaxial
0.03 - unloading of Mancos Shale compaction modulus estimated at
55 MPa axial (& 18 MPa
confining) stress corresponds to a
P-wave velocity of ~ 3315 m/s at
1 Hz frequency.
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Based on evidence for

purely elastic behavior at
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Young's modulus [GPa]
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Concluding remarks

@ Static = Dynamic moduli for undamaged (purely
elastic) non-dispersive rock, and for Hertzian
granular materials under hydrostatic conditions

§ "Undamaged" rocks within the Earth, after diagenesis and
before any damaging stress change has occurred may have
similar static and dynamic moduli

§ Unconsolidated sand: May have quite similar static and
dynamic moduli in hydrostatic conditions

§ (Gas) Shale: Both dispersion and non-elastic behavior leads
to static-dynamic discrepancy

§ If we can distinguish, this may permit determination of plasticity /
brittleness from seismic data
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