Identifying sweet spots for CO₂ injection in cemented sandstones

S.Grude¹, J.Dvorkin² and M.Landrø¹ ¹ NTNU, ² Stanford University

ROSE meeting 22-25th April 2013

NTNU – Trondheim Norwegian University of Science and Technology

Motivation

Injecting CO_2 into a formation might cause permanent changes to the rock framework. Can we quantify or, at least, categorize suitable injection intervals from well-log data?

What is a suitable injection interval?

- High porosity and permeability
- Stiff rock framework
 - Depends on porosity, mineralogy and arrangement of solid components at pore scale
 - Can resist forces from the injected CO₂

Cement type and impact on seismic parameters

Contact cement

Act as «glue» on the grain contacts Increase stiffness (elastic modulies)

Non-contact cement (Intragranular material)

Weakly affects stiffness but strongly reduces permeability due to clogging the large pores

=> Same porosity, big variation in permeability and stiffness

CO₂ injection in the Tubåen fm., Snøhvit Field

- Faults East-West, injection zone ~ 2 500 m wide
- 700-1100m uplift present depth of 2.67 2.78 km, 110m thick
- Lower delta plain depositional environment with marine and tidal influence
- Injection April 2008-2011, stopped due to pressure build-up

Topography of the reservoir in Tubåen formation. North direction is indicated by the arrow. The CO2-injection well is shown by the red solid line.

Geological setting in the Tubåen fm.

- Lower delta plain depositional environment with marine and tidal influence
 - Blocky intervals: multi distributary channel fill sediments
 - Upward coarsening intervals: distributary mouth bars and bayhead deltas
- Tidal and marine influence worsen grain sorting compared to well-sorted distributary channel sediment

Well logs

The constant cement model, (Avseth et al., 2000)

Can ascertain amount of contact cement versus fines in the pore space by matching modulusporosity data with model curve

Assume initially contact-cemented rock

Constant contact-cement curves in the porosity versus elastic modulus plane

The constant cement model

The constant cement model

Tubåen 1: ●,Tubåen 2: ▲,Tubåen 3: ▼,Tubåen 4: ■

At the same porosity, stiffer sands have higher contact cement content than softer sand and, hence, the latter have more fines than the former, and, as a result, smaller permeability at the same porosity

Tubåen 1 ●,Tubåen 2 ▲,Tubåen 3 ▼,Tubåen 4 ■

Higher-permeability samples have higher elastic moduli (*at the same porosity*) compared to lower permeability samples

Permeability sensitivity for modulus is decreasing with increasing porosity

11

Link to Petrophysics and Geology

Sweetspots

At same porosity:

High compressional modulus \leftrightarrow High degree of contact cementation \leftrightarrow High perm

Challenge to estimate velocity variations in a thin sand layer Inversion to relate to seismic prioperties?

Discussion and Conclusions

- Link elastic properties and permeability
- At same porosity, stiffer sands have higher contact cement and less fines and, as a result, smaller permeability
- Permeability sensitivity for modulus decreasing with increasing porosity
- Good correlation with SEM and geology
- Fine grained particles dislodged due to CO₂ injection and clog pore space?
 - Irrelevant compared to cracking caused by high injection rate?
- Injected into the best suited intervals

Acknowledgments

- Statoil and their partners Petoro, Total E&P Norge, GDF SUEZ E&P Norge and RWE Dea Norge AS for permission to use their data
- Olav Hansen, Bård Osdal and Lone Dyrmose Christensen at Statoil are acknowledged for providing the data and information regarding the Snøhvit Field
- Norwegian Research Council for financial support to the BIGCCS project and the ROSE consortium at NTNU
- Stanford Rock Physics Laboratory and, especially Gary Mavko for interaction and advice
- Per Avseth is acknowledged for discussions and ideas in the work
- Tiziana Vanorio and Anthony Clark for permission to show SEM pictures taken in the
 Stanford Rock Physics Laboratory