Influence of frequency and saturation on AVO attributes in partially saturated rocks

Bastien Dupuy & Alexey Stovas

Outline

- Introduction: why poroelasticity and AVO data ?
- Theories: wave propagation in porous media and patchy saturation
- Method to extract AVO attributes
- Results: influence of frequency and saturation

Global workflow

Porosity, fluid and solid parameters....

Forward problem

« Simple » upscaling (Biot-Gassmann)

« Complex » upscaling: patchy saturation

Physical description *(White, 1975; Pride et al., 2004)*: 16 parameters

Radius of patches = a

Gas saturated rock embedded in water saturated rock

« Complex » upscaling: patchy saturation

Physical description *(White, 1975; Pride et al., 2004)*: 16 parameters

Radius of patches = a

Gas saturated rock embedded in water saturated rock

Analytic relations for **low** and **high** saturations

Equivalent generalized Biot-Gassmann medium: 7 parameters

Forward problem

Poroelastodynamic equations

$$\begin{cases} \nabla.\boldsymbol{\tau} = -\omega^2 \left(\rho \ \vec{u} + \rho_f \ \vec{w}\right) & \text{Equations of motion} \\ \boldsymbol{\tau} = \left[K_U \ \nabla.\vec{u} + C \ \nabla.\vec{w}\right] \ \boldsymbol{I} + G \ \left[\nabla\vec{u} + (\nabla\vec{u})^t - 2/3 \ \nabla.\vec{u}\boldsymbol{I}\right] \\ -P = C \ \nabla.\vec{u} + M \ \nabla.\vec{w} & \text{Mechanical behaviour laws} \\ \hline -\nabla P = -\omega^2 \ \left(\rho_f \ \vec{u} + \tilde{\rho} \ \vec{w}\right) & \text{Equations of motion} \end{cases}$$

Elastic fields Poroelastic fields

8 unknowns in 2D :

- Solid u_x and u_z and relative fluid/solid w_x and w_z displacements
- Stresses T_{xx} , T_{zz} , T_{xz} and fluid pressure P

7 parameters :

- Inertial terms: ρ , $\rho_{\rm f}$ and $\tilde{\rho}$
- Mechanical moduli: K_U, G, C and M

Poroelastodynamic equations

$$\begin{aligned} \nabla \cdot \boldsymbol{\tau} &= -\omega^2 \left(\rho \ \vec{u} + \rho_f \ \vec{w} \right) \\ \boldsymbol{\tau} &= \left[K_U \ \nabla \cdot \vec{u} + C \ \nabla \cdot \vec{w} \right] \ \boldsymbol{I} + G \left[\nabla \vec{u} + (\nabla \vec{u})^t - 2/3 \ \nabla \cdot \vec{u} \boldsymbol{I} \right] \\ -P &= C \ \nabla \cdot \vec{u} + M \ \nabla \cdot \vec{w} \\ -\nabla P &= -\omega^2 \left(\rho_f \ \vec{u} + \tilde{\rho} \vec{w} \right) \qquad \text{Simple upscaling} \end{aligned}$$

Frequency dependence: ω

- Simple upscaling: $\tilde{\rho}(\omega) \rightarrow$ flow resistance term

Poroelastodynamic equations

Frequency dependence: ω

- Simple upscaling: $\tilde{\rho}(\omega) \rightarrow$ flow resistance term
- Complex upscalings: ρ̃(ω)
 K_U (ω), G (ω), C (ω) and M (ω) → mechanic moduli

Partial saturation: effective attributes

Partial saturation: effective attributes

Inverse problem

Porosity, fluid and solid parameters....

Two-steps inversion

Porosity, solid and fluid parameters....

3D three layers model

Explosive source Source function = Ricker wavelet Central frequency = 10 to 60 Hz

AVO curves for PP and PS events

PP event Vertical displacement u_z Source: 40 Hz High water saturation: 90 and 80 % Low water saturation: 10 and 20 % PS event Horizontal displacement u_x Low water saturation: 20 % Several source frequencies: 10, 20, 30, 40, 50 and 60 Hz

AVO curves for PP and PS events

PP event Vertical displacement u_z Source: 40 Hz High water saturation: 90 and 80 % Low water saturation: 10 and 20 % PS event Horizontal displacement u_x Low water saturation: 20 % Several source frequencies: 10, 20, 30, 40, 50 and 60 Hz

PP event, vertical displacement u₇

$$A_{PP}(\theta) = R_0 + G \sin^2(\theta) + K \sin^4(\theta)$$

PP event, horizontal displacement u_x

$$A_{PP}(\theta) = R_0 + G \sin^2(\theta) + K \sin^4(\theta)$$

Low gas saturation

High gas saturation

PS event, vertical displacement u_z

 $A_{PS}(\theta) = B \sin(\theta) + C \sin^3(\theta)$

Low gas saturation

High gas saturation

PS event, horizontal displacement u_x

 $A_{PS}(\theta) = B \sin(\theta) + C \sin^3(\theta)$

Conclusions

- Strong frequency dependence of AVO attributes, especially at high frequency
- For high and low fluid saturation scenarios, the effect of saturation on the attributes is minor (except at high frequency)
- Different behaviors between horizontal u_x and vertical u_z results
- Strong differences between patchy saturation and averages results, mainly for PP results.

➔ The AVO analysis can give us some extra-information on wave amplitudes

- Road ahead:
 - Real data examples
 - Inversion approach using AVO attributes
 - 4D applications

- <u>Acknowledgements:</u>
 - Louis de Barros (GEOAZUR, Nice) and Stéphane Garambois (ISTERRE, Grenoble) for their poroelastic reflectivity numerical code
 - The ROSE project for financial support
- <u>Bibliography:</u>
 - Biot (1956), Theory of propagation of elastic waves in a fluid-saturated porous solid, JASA
 - De Barros and Dietrich (2008), Perturbations of the seismic reflectivity of a fluid saturated depth-dependent poroelastic medium, JASA
 - Dupuy, De Barros, Garambois and Virieux (2011), Wave propagation in heterogeneous porous media formulated in the frequency-space domain using a discontinuous Galerkin method, Geophysics
 - Gassmann (1951), Uber die elastizität poröser medien, VNG in Zürich
 - Pride, Berryman and Harris (2004). Seismic attenuation due to waveinduced flow, JGR
 - White (1975), Computed seismic speeds and attenuation in rocks with partial gas saturation, Geophysics

Models: gas-water systems

Models: oil-water systems

PP event, vertical displacement u₇

 $A_{PP}(\theta) = R_0 + G \sin^2(\theta) + K \sin^4(\theta)$

PP event, horizontal displacement u_x

$$A_{PP}(\theta) = R_0 + G \sin^2(\theta) + K \sin^4(\theta)$$

Intercept B

Low oil saturation

High oil saturation

PS event, vertical displacement u₇

 $A_{PS}(\theta) = B \sin(\theta) + C \sin^3(\theta)$

Intercept B

Least-square fitting

Extraction of AVO information

<u>Method:</u>

- 1. Computation of full waveform seismograms in 3D stratified three layers medium,
- 2. Extraction of maximum amplitude for each event (PP and PS) using a time windowing,
- 3. Computation of AVA curves (amplitude A with respect to the incidence angle θ),
- 4. Least-square fitting of these curves with polynoms to compute the attributes as

 $A_{PP}(\theta) = R_0 + G \sin^2(\theta) + K \sin^4(\theta)$

 $A_{PS}(\theta) = B \sin(\theta) + C \sin^3(\theta)$

where R_0 and B are the intercept, G and C are the gradient and K is the curvature.

5. Plot of each attributes with respect to the frequency and the saturation

Seismic imaging: poroelastic FWI

3D acoustic FWI (Sirgue et al, 2010) → high resolution images

50-Depth (m) Estimated model True model 100-Starting model 150 200-0.6 0.8 1.0 Saturation rate

Poroelastic FWI (*De Barros et al, 2010*) → differential approach

Downscaling

Semi-global optimization

<u>Neighbourhood algorithm</u> (NA, *Sambridge, 1999*):

- Only 2 control parameters
- Model space guided exploration
- Fit quality and uncertainty

Number of generated models:

- a) 10
- b) 100
- c) 1000
- d) Fit map

Skeleton parameters sensitivity (saturated medium)

Skeleton parameters: additional data input

Downscaling after injection

V_P estimated by acoustic differential FWI (Asnaashari, 2011)

Fluid phase estimated by downscaling

700