## Module 3

## Marine receiver systems – and noise in the water





by Martin Landrø and Lasse Amundsen

#### **Ocean waves**



## **Types of Waves**



| Wave Type                     | Typical Wavelength                           | Disturbing Force                                        |
|-------------------------------|----------------------------------------------|---------------------------------------------------------|
| Wind wave                     | 60–150 m (200–500 ft)                        | Wind over ocean                                         |
| Seiche                        | Large, variable; a function<br>of basin size | Change in atmospheric<br>pressure, storm surge, tsunami |
| Seismic sea wave<br>(tsunami) | 200 km (125 mi)                              | Faulting of seafloor, volcanic<br>eruption, landslide   |
| Tide                          | 1/2 circumference of Earth                   | Gravitational attraction,<br>rotation of Earth          |

### **Amphidromic points – Coriolis and interference**



## Nova Scotia, Canada – 16 meters difference





Top five (average tidal range):

- Bay of Fundy, Canada : 14.5 m
- La Rance, France : 13.5 m
- Bristol Channel, UK : 12.3 m
- Anchorage, Alaska : 9.0 m
- Liverpool, UK : 8.3 m

## **TSUNAMI**

#### The 9.1 Sumatra-Andaman earthquake 26th December 2004





Model data at 2 hr 5 min

## Earthquakes > 5



## Sumatra-Andaman earthquake 26th December 2004

Techtonic movement 3-4 cm/year



#### **Global seismograms of the Sumatra-Andaman earthquake**



Rayleigh wave: proposed by Rayleigh in 1885

Source: IRIS



#### Tsunami wavefield 1 hour after the 9.1 earthquake

Source: USGS

#### The 9.1 Sumatra-Andaman earthquake 26th December 2004



# Seiche: standing waves in a closed ocean/lake caused by air pressure or wind

Suggested by hydrologist Francois-Alphonse Forel (professor in medicine) in 1890 (Lake Geneva)

$$T_{Seiche} = \frac{2L}{\sqrt{gh}}$$
 Merian's formula

Example: L = 10 km, average height = 100 m => T = 630 seconds ; 10 minutes

Lake seiches can occur very quickly: on July 13, 1995, a big seiche on <u>Lake Superior</u> caused the water level to fall and then rise again by three feet (one meter) within fifteen minutes, leaving some boats hanging from the docks on their mooring lines when the water retreated.

## Wikipedia:

Seiches have been observed in seas such as the <u>Adriatic Sea</u> and the <u>Baltic Sea</u>, resulting in flooding of <u>Venice</u> and <u>St. Petersburg</u> respectively. The latter is constructed on drained marshlands at the mouth of the <u>Neva</u> river. Seiche-induced flooding is common along the Neva river in the autumn. The seiche is driven by a low pressure region in the <u>North Atlantic</u> moving onshore, giving rise to <u>cyclonic</u> lows on the <u>Baltic Sea</u>. The low pressure of the cyclone draws greater-than-normal quantities of water into the virtually land-locked Baltic. As the cyclone continues inland, long, low-frequency seiche waves with wavelengths up to several hundred kilometers are established in the Baltic. When the waves reach the narrow and shallow Neva Bay, they become much higher ultimately flooding the Neva embankments.<sup>[16]</sup> Similar phenomena are observed at Venice, resulting in the <u>MOSE Project</u>, a system of 79 mobile barriers designed to protect the three entrances to the <u>Venetian Lagoon</u>.

### **Observed seiche at Lake Erie 2003**



Lake Erie Water Level Displacement start of forecast: 11/14/2003 (DOY 318) 00:00 GMT



NOAA Great Lakes Coastal Forecasting System Great Lakes Environmental Research Laboratory National Weather Service

## Factors Affecting Wind Wave Development



11

## Sinusoidal waves on deep water (Lighthill, 1978)



Velocity potential

Velocities at depth z:

$$\Phi(z) = \Phi_0 e^{-kz}$$

$$v_x = \frac{\partial \Phi}{\partial x} = -k\Phi_0 e^{-kz} e^{i(\omega t - kx)} \quad v_z = \frac{\partial \Phi}{\partial z} = -ik\Phi_0 e^{-kz} e^{i(\omega t - kx)}$$

$$k = \frac{2\pi}{\lambda} \qquad \omega = \frac{2\pi}{T}$$

## Sinusoidal waves on deep water



#### Source: Patrick Holmes, Imperial College



## The dispersion relation for ocean waves



Ocean wave period versus wavelength for various water depths (20, 30 and 100 m)

## Pressure variation below ocean waves

Surface elevation:

$$\eta = \frac{H}{2}\cos 2\pi (\frac{x}{\lambda} - \frac{t}{T})$$

- $\lambda$  = wave length
- H = wave height
- T = wave period
- d = water depth
- z = depth
- $g = gravity (9.8 m/s^2)$

Pressure vary with x and z:

$$\frac{p}{\rho g} = \eta \frac{\cosh 2\pi (d-z)/\lambda}{\cosh 2\pi d/\lambda} + z$$

Source: Patrick Holmes, Imperial College

## **Particle velocities**

Particle velocities (horizontal and vertical):

 $\lambda$  = wave length H = wave height T = wave period d = water depth z = depth g = gravity (9.8 m/s<sup>2</sup>)

$$u = \omega H \frac{\cosh 2\pi (d-z)/\lambda}{2\sinh 2\pi d/\lambda} \cos(2\pi (x/L-t/T))$$
$$v = \omega H \frac{\sinh 2\pi (d-z)/\lambda}{2\sinh 2\pi d/\lambda} \sin(2\pi (x/L-t/T))$$

For deep water, both pressure and velocities decay exponentially and at same rate, so there is no practical differences in the decay rate between the two.

Source: Patrick Holmes, Imperial College

## **Pressure response factor**



## Dynamic pressure versus streamer depth assuming 40 m wavelength



### Modeled dynamic pressure below a sinusoidal ocean wave



Group summation and low cut filters will reduce the noise effect significantly

### Langmuir circulation layer; Irving Langmuir 1927







Typical depth of this circualtion layer is less than 20 m

Langmuir: Water motion is 3D

#### White streaks caused by Langmuir circulation





#### Deep Sea Research Part A. Oceanographic Research Papers

Volume 35, Issue 5, May 1988, Pages 711-731, 733-737, 739-747

#### Langmuir circulation within the oceanic mixed layer

Robert A. Weller\*, James F. Price\*

\* Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A.

Regions of convergent surface flow were located with surface drifters. In these regions the downward vertical and downwind horizontal components of the flow were comparable in size and, at times, in excess of 20 cm s<sup>-1</sup>. This downwind, dowmwelling flow was jet-like in structure, with the maximum velocity located below the surface. Away from the downwelling regions and in the lower half of the mixed layer below the convergence zones, the flow associated with the Langmuir cells was an order of magnitude smaller and not well resolved in these experiments.

## Dynamic pressure versus streamer depth assuming 40 m wavelength (5 sec period) – water depth 60 m



## Particle velocity versus depth assuming 40 m wavelength – water depth 60 m



#### Typical swell noise observed on seismic data has a period of 1 s



# Dynamic pressure and velocity fields decay exponentially as a function of water depth



Strongly dependent on ocean wavelengths (5, 25 and 100 m shown above)

### Logarithmic version of previous plot



### Waveheights at Gullfaks 2012



## Wind speed at Gullfaks 2012



## Waveheights at Gullfaks 2012 – smoothed (operator length: 14 days)


#### **Comparing waveheights and wind velocity at Gullfaks 2012**



#### Gullfaks 2012 – correlation between wind speed and wave heights

Relation between waveheight and wind velocity (modified from Kinsman, 1965):

$$H = aU^2 + b$$

a = 0.0246; b= 1.0 m



#### Mountain waves: USS RAMAPO – 1933 Pacific Ocean

Source: Ned Mayo

In February, 1933, the USS Ramapo, a 146 meter (478 ft) Navy oiler found itself in an extraordinary storm on its way from Manila to San Diego. The storm lasted 7 days and stretched from the coast of Asia to New York, producing strong winds over thousands of miles of unobstructed ocean. Driven from behind by winds on the order of 60 knots, the crew had time to carefully observe the nearly sinusoidal mountainous waves. An officer on the deck observed the crest of the wave approaching from behind just over the level of the crow's nest while the stern of the ship was at the trough of the wave. Subsequent scaling yielded the height of 34 meters for the wave.



Wavelength/waveheight ratio = 10

#### USS RAMAPO



### Low frequency part of wave spectra

#### Pierson-Moskowitz spectrum:



Wave spectra of a fully developed sea for different wind speeds according to Moskowitz (1964).

#### Torsethaugen, 1993: double peak model



## Foam (mixture of water and sand) on shore after a storm in Aberdeen



M3: Marine receivers

### MarineBioPhotography.com MarineBioPhotography.com





Chaotic sea







Source: Columbia University and other

#### **Observations**

- The noise created by the mass distribution effects of a sinusoidal surface wave decays exponentially and is negligible for frequencies above 1-2 Hz
- Langmuir layer extends down to 20 m, and create helix type of water circulation

#### **Measuring noise on streamers**



Photo: Kongsberg Maritime

#### Marine seismic noise – field experiment Haltenbanken, Seres project 1988-1989

Streamer depth: 9-12 m, 3 km streamer, 120 channels, birds at traces: 1,13,25,37,49,61,73,85,97,109



### RMS-average for records 63-67 good weather



Data from the SERES Marine Seismic Noise Project 1989

# Comparing the optimal noise records with some weather noise records: Bird noise is still visible



#### Sea state is more important than swell size



- Indication that rough seas with relative small wave heights create more noise than a calmer sea with larger swells
- Same wind speed for the two measurements
- Noise generated by motion and cavitation close to sea surface?

#### Strong weather noise – 33 knots sea state 6-7



# Typical weather noise (black) compared to the ambient noise (white)



#### Records in rough weather (wind speed 33 knots, gale)



**KUSE 2013** 

50

## Noise records at 6 and 15 m, conventional and new streamer





Courtesy of PGS ROSE 2013

#### **Solid streamers**



Noise comparison of solid streamer (left) and fluid filled streamer (right) measured for moderate seas. From Dowle, SEG, 2006.

#### Ocean wavelength of 1.6 m (1 s period) decay with depth



CONCLUSION: This type of noise is rarely observed in seismic data, because the period is rarely larger than 1 second..

## Turbulent flow around a streamer (Elboth et al., Geophysics 2010)



Figure 2. (a) The single hole outlet arrangement. A slight bend toward the nozzle is imposed to release the dye in an area where we hope there are minimal flow interactions with the arrangement (cf. the zoomed inset). (b) The four-hole nozzle outlet, which was hooked onto the streamer cable.



Figure 3. Snapshots of a seismic streamer cable in the ocean. (a) Cross-section view visualized by a single hole dye release. (b) Three-dimensional view by a multihole dye release.

#### Flow noise reduction from superhydrophobic surfaces Geophysics, 2012

Thomas Elboth<sup>1</sup>, Bjørn Anders Pettersson Reif<sup>2</sup>, Øyvind Andreassen<sup>2</sup>, and Michael B. Martell<sup>3</sup>



#### Tug noise – increase with increasing towing depth?



Increased angle between lead ins and the streamer => more tug noise

- Use of lead ins to decrease the angle => less near offset coverage?

#### **TUG NOISE**

#### **RAW SHOTS**



http://www.xsgeo.com/course/acq.htm

#### Site survey data – «random» swell noise



#### 5-15-100-130 Hz band pass filter



Still some swell noise visible

#### Swell noise on site survey data



#### **Frequency spectra**



#### Another problem for streamers: Barnacle growth...



#### **Bubbles as mechanism for noise**



Sea surface sound, ed. Kerman

#### **Bird noise**





Comparison between a bird trace (13) and the neigbouring trace (12) – in time and frequency domain.

Significant bird noise between 5-35 Hz and 100-130 Hz...



150

200

Frequency (Hz)

250

9--0

50

100

... and bird trace 85 versus trace 84.

### Directional effects caused by wind

direction? RECORD 55



NOISE F-K PERSPECTIVE VIEW







Fig. 4.5: Seismic data display of record 55 showing that some of the noise is coherent.



Observed angle: 59°

TRACE 20



Comparison between optimal noise gather and seastate 3 (12 knots wind speed) weather conditions - this is WEAK weather noise (moderate breeze; moderate swell (1m))

- Weather noise is ~ white
- 10 dB increase

Mechanism: Rapid wave motion acts as acoustic sources at the ocean surface – TWO ways to attenuate this type of noise: WAIT for perfect weather or tow DEEPER

#### **Comparing towing noise and weather noise**

Changing the surface properties of the streamer attenuates noise below 10 Hz, while weather noise is white



Elboth et al., 2012

Landrø et al., 1989

## Background noise (RMS-microbar) at shallow (less than 100 m) waterdepth (seabed hydrophone)



3.7 microbar on average
# Estimated noise (seabed hydrophone) – water depth larger than 100 m



13 microbar average

# Water depth < 100 m; 10 microbar on average – some directional noise



#### **Fk-plot**



Apparent velocity: 1750 m/s => 59 degrees relative to the cable

## The velocity of a sinusoidal ocean wave



 $\lambda$  = wave length g = acceleration gravity d = water depth



#### Do we observe receiver ghosts for shot noise?



Observe notches around 60 Hz for all examples => 12 m streamer depth Noise wavefield has a strong vertical component

#### Do we observe receiver ghost notches for weather noise?



M3: Marine receivers

#### Do we observe receiver ghosts for ship noise?



No notches around 60 Hz – noise signal is predominantly horizontal – normal modes? Huge difference between the two – caused by distance or different engines?

# **Frequency variation with offset - field data**



| STATE OF SEA |                      |                     | SWELL                 |                     |  |
|--------------|----------------------|---------------------|-----------------------|---------------------|--|
| Code         | Descriptive<br>terms | Height<br>in metres | Descriptive<br>terms  | Height<br>in metres |  |
| 0            | Calm (glassy)        | 0                   | No swell              |                     |  |
| 1            | Calm (rippled)       | 0 - 0.1             | Low swell, short or   |                     |  |
|              |                      |                     | average length        | 0-2                 |  |
| 2            | Smooth (wavelets)    | 0.1 - 0.5           | Low swell, long       |                     |  |
| 3            | Slight               | 0.5 - 1.25          | Moderate swell, short |                     |  |
| 4            | Moderate             | 1.25- 2.5           | Moderate swell,       |                     |  |
|              |                      |                     | average length        | 2-4                 |  |
| 5            | Rough                | 2.5 - 4             | Moderate swell,long   |                     |  |
| 6            | Very rough           | 4 - 6               | Heavy swell, short    |                     |  |
| 7            | High                 | 6 - 9               | Heavy swell,          | 24                  |  |
|              |                      |                     | average length        | -                   |  |
| 8            | Very high            | 9 -14               | Heavy swell, long     |                     |  |
| 9            | Phenomenal           | <u>≥</u> 14         | Confused swell        |                     |  |

### **Beaufort scale**

| Beaufort<br>numbers | Descriptive<br>term | Wind speed<br>equivalent<br>(knots) | Specifications for<br>observations on board ship<br>(open sea)                                                                                    |
|---------------------|---------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1              | Calm<br>Light Air   | 0-1<br>1-3                          | Sea like a mirror.<br>Ripples with appearance of                                                                                                  |
| 2                   | Light Breeze        | 4-6                                 | scales, no foam crests.<br>Small wavelets still short.<br>Crests glassy and do not                                                                |
| 3                   | Gentle breeze       | 7-10                                | break.<br>Large wavelets; crests<br>begin to break. Foam glassy.                                                                                  |
| 4                   | Moderate breeze     | 11-16                               | Perhaps scattered white horses.<br>Small waves becoming<br>longer. Fairly frequent                                                                |
| 5                   | Fresh breeze        | 17-21                               | White horses.<br>Moderate waves with<br>pronounced long form. Many                                                                                |
| 6                   | Strong breeze       | 22-27                               | Large waves beginning.<br>Extensive white foam crest.                                                                                             |
| 7                   | Near gale           | 28-33                               | Probably spray.<br>Sea heaps up and foam from<br>breaking waves blown in                                                                          |
| 8                   | Gale                | 34-40                               | streaks with wind.<br>Moderately high waves of<br>greater length. Spindrift and                                                                   |
| 9                   | Strong gale         | 41-47                               | well-marked streaks of foam.<br>High waves. Dense foam streaks.<br>Wave crests begin to topple.                                                   |
| 10                  | Storm               | 48-55                               | Spray may effect visibility.<br>Very high waves with long<br>overhanging crests. Surface of<br>sea white. Tumbling of sea<br>heavy and shock-like |
| 11                  | Violent Storm       | 56-63                               | Visibility affected.<br>Exceptionally high waves,<br>(small and medium-size<br>ships lost to view at times).<br>Sea completely covered in         |
| 12                  | Hurricane           | 264                                 | foam. Visibility affected.<br>Air filled with foam and<br>spray. Sea completely white<br>with driving spray.                                      |
|                     |                     |                                     | Visibility very seriously<br>affected.                                                                                                            |

#### **Ghost notches versus 1/f- noise**



#### **Zoomed version of previous plot**



#### Constant fight between noise and ghosts!!

#### Effects of time-varying sea surface in marine seismic data



Estimated image of sea surface

wavelength ~170 m

Wavelength/waveheight ratio = 170/4 = 43 (s=1/43)

### Zoom of Okwuduli et al.'s sea surface image



## Wave steepness (s)

Steepness : s = H/L

Significant waveheight: Average of 1/3 of waves present

Typical steepness values might ragne between s = 1/15 to s=1/150

If s > 1/7 the wave breakes

### Waveheight versus wind speed



# Data from 2003 150 nautical miles east of Cape Hatteras; water depth: 4400 m

## **Recorded noise from ship traffic**

| Ship                  | Record      | Speed       | Distance       | Low cut Filter |
|-----------------------|-------------|-------------|----------------|----------------|
| "Admiral Chekov"<br>" | 1-6<br>7-20 | 15 kts<br>" | 5.5 miles<br>" | in<br>out      |
| Small coastal ship    | 21-50       | 13 kts      | 2 miles off    | in             |



## fk plot of «Admiral Chekov»



VIEW

38 000 ton Russian tanker with one single screw (5 blades)

- Apparent velocity increases with increasing record number => angle between Chekov and the streamer



**KUSE 2013** 

#### M3: Marine receivers Estimating decay curves for noise versus distance



#### **Admiral Chekov**



### Comparison with a seabed seismic data set



## Frequency spectrum – Admiral Chekov (9 km)



# Comparison of RMS-levels for «Admiral Chekov (Russian tanker)» and a small Norwegian coastal ship



## Frequency spectrum – coastal ship (3 km away)



#### **Frequency spectra - comparison**



## ESTIMATED POSITION OF SMALL COASTAL SHIP RELATIVE TO STREAMER



## **4C** seismic

- Ocean bottom cables
- Ocean bottom nodes
- Trenched cables for permanent systems
  - Fiber optic systems
  - Electrical systems
- OBS