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Air gun — the most common marine seismic source
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The peak signal is generated
when the bubble is small — the
bubble oscillates several times
before it breakes the water
surface — bubble period is
dependent on volume, gun
depth and firing pressure




Rayleigh’s equation (1917) Studied the sound
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Rayleigh’s paper from Phil. Mag. 34, 1917:

VIII. On the Pressure developed in a Liquid during the
Collapse of a Spherical Cavity. By Lord RaYLEIGH,
OM., F.R.S*

JHEN reading Q. Reynolds’s description of the sounds
emitted by water in a kettle as it comes to the boil,

and their explanation as due to the partial or complete
collapse of bubbles as they rise through cooler water, I
proposed to myself a further consideration of the problem
thus presented; but I had not gone far when I learned from
Sir C. Parsons that he also was interested in the same
question In connexion with ecavitation behind screw-pro-
' pellers, and that at his instigation Mr. 8. Cook, on the

hasis of an investigation by Besant, had calculated the
pressure developed when the collapse is suddenly arrested
by impact against a rigid concentric obstacle. During the
collapse the fluid is regurded as incompressible.



Rayleigh studied the collapse and sound generated
by water vapor cavities in boiling water
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Striking similarity between boiling water and air gun bubbles
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w/U=R¥r2; . . . . . . (1)

and if p be the density, the whole kinetic energy of the
motion is

Jﬁpj f Amidr=2mpUtRY. . . . (2)

Again, if P be the pressure at infinity and R, the initial
value of R, the work done 1s

“"""—f(ﬁa RY). . . . .. . (3
When we equate (2) and (3) we get
3
U2=2—E(E{‘-’- --1),. N

expressing the velocity of the boundary in terms of the
radius. Also, since U=dR/dt,

=GR ), oo =R/ GR) ) a7,

if B=R/R,. The time of collapse to a given frfa.ctlon of




96 Lord Rayleigh on the Pressure developed

Writing 8°=2z, we have
8/2
B dB —l;f i(1—2)"¥de,

which may be expressed by means of I" functions. Thus

| 5y T
T=R°\/(6PP) (I),(i(z)_.gmﬁsm,\/ p/P). . (6)




THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA VOLUME 24, NUMBER 6 NOVEMBER, 1952

An Experimental Study of Single Bubble Cavitation Noise*

.

MAarx HARRISON
David Taylor Model Basin, Department of the Navy, Washingion 7, D. C.

(Received May 23, 1952)

An experimental study of the noise produced by a single cavitation bubble has been made. The noise
consists principally of a transient pressure pulse associated with the collapse of the bubble. The motion
of the bubble has been photographed simultaneously with the measurement of the pressure pulse.
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Observed cavity and comparison with the Rayleigh formula
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Gilmore (1952):

_ — —_ —_— —_—
p p:}':- p:{i 7 H 2

d
Enthalpy at bubble wall: H = j—p
Je,

=> |f H and R are known, we can find the relative pressure signal

Anton Ziolkowski (1970) formulated a method for
calculating the output pressure waveform from an air
gun (Geophys. J. Roy. Astr. Soc., 21, 137-161)
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Collapse of an initially spherical vapour cavity in the
neighbourhood of a solid boundary

By MILTON S. PLESSET AND RICHARD B. CHAPMAN
California Institute of Technology
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Collapse of an initially spherical vapour cavity in the
neighbourhood of a solid boundary

By MILTON S. PLESSET AND RICHARD B. CHAPMAN
California Institute of Technology
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Milton Plesset in Copenhagen - 1934
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Milton Plesset, Niels Bohr, Fritz Kalckar, Edward Teller and Otto Robert Frisch at
the Institute for Theoretical Physics in Denmark, 1934.



Congress in Copenhagen 1934 (?)

N. Bohr, P.A.M. Dirac, W. Heisenberg, P. Ehrenfest, M. Delbruck, L. Meitner



Otto Robert Frisch (1904-1979)

Lise Meitner was his aunt

Left to London in 1933

5 years in Copenhagen

In 1938 Lise got a mail from Otto Hahn reporting that barium
was a biproduct if neutrons collided with uranium. Frisch and
Meitner interpreted this as splitting of the uranium nucleus.
Frisch denoted this as fission.

At Los Alamos Frisch becomes leader of the «Critical
Assemblies group» — to determine the exact amount of
enriched uranium which would sustain a nuclear reaction...
He did this by stacking several 3 cm bars of uranium hydride
at a time and measuring rising neutron activity....

One day he almost caused a runaway reaction — of the corner

of his eye he saw the red lamps flickering — realizing what was

happening he scattered the bars with his hands. Later he
found that this dose was quite harmless, but if he had waited
another 2 seconds it would have been fatal....

This experiment was used to determine the exact mass of
uranium required for the Hiroshima bomb.

Returned to England in 1946

Otto Robert Frisch

Otto Robert Frisch's wartime Los Alamos ID
badge photo.

Born 1 October 1904
Vienna, Austria

Died 22 September 1979
(aged 74)

Nationality Austrian/British

Fields physics

Known for atomic bomb

Influences Rudolf Peierls

Notable awards Fellow of the Royal Society

Signature

ORA L



Lise Meitner (1878-1968)

- Meitner is often mentioned as one of the most glaring examples
of women's scientific achievement overlooked by the Nobel
committee

- Meitner also first realized that Einstein's famous equation, E =
mc?, explained the source of the tremendous releases of energy
in nuclear fission, by the conversion of rest mass into kinetic
energy, popularly described as the conversion of mass into energy.

- Meitner refused an offer to work on the project at Los Alamos,
declaring "I will have nothing to do with a bomb!"28] Meitner said
that Hiroshima had come as a surprise to her, and that she was
"sorry that the bomb had to be invented."!22



//upload.wikimedia.org/wikipedia/commons/0/03/Lise_Meitner_(1878-1968),_lecturing_at_Catholic_University,_Washington,_D.C.,_1946.jpg
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Nearfield and farfield signatures of a single (40 cu.in.)

air gun
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Amplitude damping from
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WHY?

- Irrotational water
motion
Temperature effects

- Transport of water
vapor across the
bubble wall

- Viscosity

- Bubble is gradually
loosing air



Characteristics of a far field source signature
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Primary to bubble ratio: P/B
Bubble time period: T

P/B-ratio is frequency-dependent!



Some empirical relations:

Pl-"3'£;'l.-'3
Nooteboom, 1978 — bubble time period: T o< —
RI}:
Nooteboom, 1978 — Amplitude: A~ p2/3

NN — Amplitude: A~ VL3



Experimental tank experiment used in Jan Langhammer’s
PhD thesis:
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Filming of a small air gun in a water tank

-l

Jan Langhammer and Martin Landrg, 1991




Snapshots from above
Langhammer and Landra, Geophysical Prospecting, 1996

Notice the 45 degree rotation of the bubble system between primary and bubble



Upward movement of the bubble

L 28 3
Va=%3 1, Rdr, Herring, 1941; Taylor, 1942
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Figure 6. Modelled bubble radius (solid line) and modelled upward displacement (dashed
line). The dots mark the upward displacement of the bubble centre estimated from high-
speed filming.

Langhammer and Landrd, Geophysical Prospecting, 1996



Comparing near-filed measurements in a tank

with free field
= 0.2
o 1.6 cubic inch gun 0.85 m3 tank; 7 °C
8 | e 360 m3 tank; 18 °C
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The difference between the big tank and the free field is probably a temperature effect

The bubble time period is shorter for the tank experiment - however, the
deviation is too big to be explained by temperature ??



Experimental study of viscosity effects on
air-gun signatures Jan Langhammer* and Martin Landrot
Geophysics, 1993, 58, 1801-1808

Bornhorst and Hatsopoulos (1967):
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F1G. 3. Unfiltered signatures when the gun was fired in a
liquid with viscosities of 6 centipoise (solid line) and

489 centipoise (dashed line).




P/B-ratio and bubble time period decrease with
increasing viscosity
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Viscosity is NOT the main energy loss mechanism for air gun
bubble damping



TEMPERATURE EFFECTS ON
AIRGUN SIGNATURES!

JAN LANGHAMMER?'? and MARTIN LANDR@? Geophysical Prospecting 41, 737-750, 1993

Schrage, 1953 proposed the following mass transfer formula (water

vapour across the bubble wall)
n = mol of evaporated or condensed water

i \/ 1 (psv(T ) pv(Tb)) Psv = Saturated water pressure

Pv = partial pressure of vapour in the bubble

2nR .M, / /
8 A = Area of bubble surface
015 (a)
a
010 : Increasing temperature Measured near-field signatures

for 5 (solid) 29 (dashed) and 44
(dotted) centigrades water
temperature

Amplitude (bar-m)

50
Time (ms)

Bubble period and P/B-ratio increases with increasing temperature



Bubble time period and P/B-ratio increases with
water temperature
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M1: Marine seismic sources

Methods to improve the source
signature

oo vertical farfield

Al
o]
[ [ [ | [ [ [
N
|
7
\
/
)
|
A A R B

—=oo
—=0oo
—aoo L L L L L L L
ioco 1=s0 =0oo ==0 =00 =s0o ET=T=) aso soo
Tihme (mis)

\

N o vertical farfield]
\,\f\/\ SV NN _..._\/_,_\f\

0

/e

Kiuce
W b 1]
Wwon F | m o 1] [/ 0
I

]
]
0
0
0
]
0

Frequency (H=)

ROSE 2013



Improving the Primary to Bubble ratio: Guns with
varying volumes

!
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Part of an airgun array onboard a vessel. gun volumes in in®. The fotal volume is 3,397 in%.

© Schlumberger



HOW

T
WORKS

GENERATOR “G" is fired

PULSE IS EMITTED

and the bubble starts to
expand. ..

When the bubble approaches (L
maximum size, INJECTOR "1™

is actuated, injecting air
within the bubble.

The injected volume of air
REDUCES and RESHAPLS the
bubble oscillation.

Need a lot of air:

Modeling of Gl gun signatures,
Landrg, 1992, Geophysical Prospecting, 40, 721-747.
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Use modeling to optimize the P/B-ratio with respect to injection
start time, injection volume and injection period
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Clustered airguns : Improved primary to bubble ratio
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Example of a three-gun cluster

This figure compares the peak amplitudes of far-field measurements

The three-gun cluster source can be used for many types of surveys.
for three-, two- and single-gun clusters.

7.0 ,
Three-gun peak amplitude = 6.7
49 Two-gun peak amplitude = 5.2
L Single-gun peak amplitude = 3.0
) 141 1
Acoustic _
pressure s TN
(bar-m) 14 Bubble effects
49 Reflected arrivals (ghost)
-1.0
200 250 300 350 400

Time (msec)

e TS o

These plots show the peak amplitudes and frequency spectra from far-field measurements made on a three-gun cluster fired at 2000 psi.

Source: Schlumberger



8-gun cluster

The frequency spectrum of the geophone data in the salt sheet shows The ITAGA source provides optimal results in deep wells, ensuring good
that the dual ITAGA 16-gun tuned array provided a usable bandwidth signal penetration over a large frequency bandwidth.
of5to 100 Hz.
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Source: Schlumberger



Far-field measurements of the 3-gun cluster for

various depths

1.0 200
Gun firing depth - Gun firing depth
3.0m LS ——30m
4.2 I ——-45m 188 | ik ——-45m
........ 7.0m
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Acoustic ‘ spectrum
pressure : i - (dB referred
(bar-m) _qa| E tol uPa/Hz 164
{: at1m)
2| I 152
70l 140
200 250 300 350 400 450 0 50 100 150 200 250

Time (msec) Frequency (Hz)

Source: Schlumberger

- Bubble time period decreases with increasing depth
- Ghost notch decreases with increasing depth
- More low frequencies (between 10-70 Hz) for deeper sources



A G-gun cluster

Source depth 5 m and 2000 psi
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Low frequency and large G-gun sources

FAR FIELD SIGNATURE AND SPECTRUM
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Rattray’s PhD thesis (Caltech, 1951)

Collapse of a cavity in the vicinity of a wall < a two-gun cluster

o0

R = Z R, (1) P, (cos©) VZ @ (Y‘,G,’L‘) =0 )

NnN=0

Estimated shape of cavity
versus time: solid and dashed
shapes represent two
different approximations




Expanding in powers of h and considering coefficients of h

one obtains with the aid of equetion (16)
(/) 2
dt”_ B FR
ar ©)
> 2,

Thus
o

3
7 = ;E"L 5 a/e

\ (=]

= O.4/ 1@

The time of collapse is therefore

7= .9/5(1+0.4/h) +OF?).

Another solution (from Rattray’s thesis) for
tranlational motion of bubble

1
s

(17)

..no wonder why we love science



Fig. 3 = HNotion eof cavita‘%iozj bubble as observed
by Knapp and Hollander (11J,



Simple expression for the bubble-time period of two clustered air guns
GEOPHYSICS, VOL. 77, NO. 1 (JANUARY-FEBRUARY 2012); P. Al-A3,

Daniel Barker' and Martin Landro’

1/3y
Strandenes and Vaage (1991) introduced the equilibrium radius: ~ Rgq = R, (i)

Py
Rayleigh found in 1917: T, = O.915R0\/§
i 1951 R
Rattray found'm 951 that the c'oIIapse T=T,1+0412)
time for a cavity close to a wall is 2b
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Barker and Landrg (2012) suggested to replace R with R,
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Barker and Landrg (2012) found the following
expression for the cluster bubble time period:

where we have used the parameter k = 2b /R to simplify the ex-
pression. Dividing by the charateristic time of a single gun, we get

the ratio
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Clustered air guns — important to include the water motion

Barker and Landrg, 2013: Use equipotential surfaces to account for clustering
effects (submitted to Geophysics)

1.30 T T T T
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— Estimated

1.20 |

2-gun cluster

Model the bubble time period by this
technique, further work is needed to
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Estimating bubble time periods for inline and
triangle 3-gun clusters

1.5 1 ] ] |
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14 b
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Triangle configuration seems to be more effective since bubble
time increase starts earlier as separation distance decreases



Calculating the bubble period for n-gun clusters in a circle

— 2 guns
T — 3 guns [
b 4 gpuns
D guns

Relative time period

Barker and Landrg, 2013



Amplitude (bar-m)

Air gun bubble damping by a screen, Langhammer et al., Geophysics 1995

screen. we observed the same tendency of an increasing
primary-to-bubble ratio with an increasing screen length. at
both 3-m and 5-m water depths

The bubble oscillations are damped
significantly

HYDROPHONE 1 l

HYDROPHONE 2 l

Notice: More low frequencies

FIG. 5. Experimental configuration of hydrophonc array and
air gun. FIG. 6. The 28-cm radius screen mounted on the gun.
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[l

Damping of secondary bubble oscillations for towed air guns,
Landrg et al., Geophysics, 1997
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Modeling of water gun signatures
Landrg et al., 1993, Geophysics 58, 101-109.
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United States Patent [19]

Huizer

[S4] METHOD AND APPARATUS FOR SIGNAL
IMPROVEMENT IN MARINE SEISMIC
. EXPLORATION

[75] Inventor: Willem Huizer, Rijswijk,
Netherlands

[73] Assignee: Shell Oil Company, Houston, Tex.

. S
t

TIME
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-

By towing one'subarray at 7.5 m depth and the other at 5 m depth, and using firing
time delays, the P/B —ratio was improved from 5.6 to 9.5.
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Estimating the source signature

reprint series

reprint serie:
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Estimating the source signature

Ziolkowski, Parkes, Hatton and Haugland, 1982, The signature of an air-gun
array: Computation from near-field measurements including interactions,

Geophysics, 47, 1413-1421.

sea surface %
hydrophone '_/
[ e | B =4

observation point

For N sources we get N equations like the one above, and then
we solve for Sj from the N measured near-field measurements

(pn)



Farfield test experiment of near-field to far-field

extra polation, Landrg, Vaage and Strandenes, 1991, First Break, 9, 375-385.
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However, for compact air gun arrays we found
instabilities:
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Reduce this effect by measuring farther away from the sources =>



The ministreamer inversion method: Landrg and sollie, 1992,

Geophysics, 57, 1633-1640: Source signature determination by inversion

sea surface .
= = === ="
air gun array
= ~— et
ninistreamer :
weight

Modified Kirkwood-Bethe equation:

Measure quasi-farfield signatures at a ministreamer below the source array, and invert
for ¢ p



Feoplvsical Prospecting, 1998, 46, 353-389

An experimental comparison of three direct
methods of marine source signature estimation

Robert Laws,? Martin Landrg® and Lasse Amundsen®

Method: Near Field Monopole Inversion (MNotienal Source) Method: Ministreamer Bubble lInversion
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Figure 3. Near-vertical (7° off) signature of a 854 cu.in. string of single airguns. ) B .
Figure 13. MBI: Near-vertical (7° off) signature of a 854 cu.in. string of single airguns.



Summary of all tests

Table 2. Error-energy (3.5—110Hz bandwidth) expressed as a percentage of the total received
energy for a variety of test conditions for each of the three methods. The 854 cu.in. array does not
include a cluster but the 1244 cu.in. array does. The specified angle is the radiation angle aft of
the vertcal in the plane of the source string. Because of the overloading of the ministreamer there
is no result from the MMI method for some tests. The experimental errors would lead to a
residual error-energy of about (0. 1%:.

Error-energy as % of signal energy

Shot no. Drescription NS MBI MMI
0313 Single 155 cu.in. gun 4.0 2.7 4.7
1312 2*195 cu.in. cluster A8 6.0 3.2
1513 3*195 cu.in. cluster 7.2 2.6 2.5
2612 854 cu.in. near vertical 0n.e 1.3 MNo result
2613 854 cwin. 15° 1.0 1.4 Mo result
2614 854 cw.in. 29° 0.7 1.3 Mo result
2615 854 cw.in. 40° 2.2 2.4 Mo result
2616 854 cw.in. 48° 4.3 2.1 Mo result
2617 854 cwin. 54° 7.2 3.6 Mo result
2618 854 cwin. 59° 3.7 3.1 Mo result
2619 854 cwin. 63° is6 3.1 Mo result
2620 854 cwin. 6687 2.7 4.0 Mo result
2621 854 cuw.in. 69° 2.4 4.2 MNo result
2713 1244 cu.in. near vertical 1.4 1.2 MNo result
2714 1244 cu.in. 21° 1.1 1.4 MNo result
2715 1244 cuin. 33° 1.2 1.7 MNo result
2716 1244 cu.in. 43° e 3.2 MNo result
2717 1244 cuin. 51° 7.5 2.0 Mo result
1012 Severe drop-out 1.3 5.2 No result
2514 Severe mis-synchronization 1.9 3.6 5.8

Average: 3.1 2.8
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Source ghosts and directivity effects
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The source ghost spectrum

1 E R \ 1 |". R \

s(t) = =plt—=| - =p| t—=| 2.13
{ ] Rpu__‘ c.| J Rgp |_‘. __.l ( :}

where c is the sound velocity in water, and R e~ R+2z,. Fourier fransformation of equation

=]
2.13 and assuming that R, ~ R in the denominator of the last term (but not in the exponent!)
yields:

—_
c

—fzo}:?g'\
l1-e l (2.14)
\ 7

i

—iaR/ ¢

1
Sim)= =P(a
(o) (o)e

Letting the source ghost spectrum be the last part of this equation (within the paranteses) means
that the source ghost spectrum (H(®)) is

—:'Em%
Hwm)=1-e (2.15)
The norm of this ghost spectrum is given as (® = 27f)
2Tz
|H(f) = |2sin| —=| (2.16)
sea surface ‘
i H(D)|
g
-—i—— X source
R
. Cc
v far-field — freqlmcy

hydrophone



Angle dependency — ghost effect

* Free surface < dipole source

27zfzg cos @
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H(f)=|2sin
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Typical source directivity plots
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Source: PGS (Nucleus)



Amplitude variations with azimuth

f=60Hz

Source: PGS (Nucleus)



Superlong arrays are used to focus energy vertically

Array length L Ghost effect

fmne)

C 2nfz, cos O
|¢| = /L sin 0 =i C Hossein Mehdi Zadeh, PhD thesis,
( c ) | NTNU, 2011
0% 40 m, 45 Hz
51 m, 35 Hz
| 51 m, 45 Hz

Normalized amplitude
o o
= n
T

ritical offset

\ I | :
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Offset (m)




Finite difference modeling of single gun and long array (L)

scaled

].5 | | I I
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Source: H. M. Zadeh, PhD thesis, NTNU 2011



EXTENDED ARRAYS FOR MARINE SEISMIC ACQUISITION
GEOPHYSICS, VOL. 43, NO. | (FEBRUARY 1978)

J. H. LOFTHOUSE* anxp G. T. BENNETT*
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Superlong arrays are worse for
* ' shallow targets — improved for
deeper

LINE HB 1 2

SOURCE . SELEMENTS AT ZB8 M SOURCE S ELEMENTS AT 42 M.
CABLE SECTIONS CABLE SECTICNS!

wIS gtS50 M wlE at 50 M



Vertical and directional far-field signatures & spectra
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PGS electrical marine vibrator, 2005
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Figure 2: The combination of the amplitude
T spectra for the Subtone (low frequency) and
i Triton (high frequency) vibrator sources.
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Figure 6: Migrale.d sections (deep) for an airgun source (left) and a
marine vibrator source. The phase of the vibrator source section has
been matched to the airgun data for comparison.

Source: PGS



Time slice comparison — vibrator versus dynamite

i
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Figwre 8: Time slice at 1.5 s TWT for the
marine vibrator 3D migrated volume.

Figure 9: Time slice at 15 s TWT for the

dynamite 3D migrated volume.

Source: PGS



Marine vibrators and the Doppler effect
Dragoset, Geophysics, 1988
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Je =1,(1 + ).

s=k-V/V, (4)

where V is the relative velocity of a source and receiver, k is a
unit vector along the line joining the source and receiver, and
V, is the speed of sound in the medium.

Phase:
&(f) = 360°8T f*/(f; — /).

Dragoset, Geophysics, 1988



Correcting for Doppler effect

1.6

Before phase corretlon o After phasecorrectlon

Dragoset, Geophysics, 1988



Comparing marine vibrator and air gun data
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Low frequencies
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Why so difficult to make low frequency

* Free surface effect — strong for low frequency

Pl /3 I:;l."E
376
F,

* Limit on volume and pressure: T

* Vibrators will be big as well
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Near field measurements — note that 3-gun cluster gives slightly more energy
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Airgun hyperclusters, Hopperstad et al. EAGE 2012

1680 in’ Hypercluster vs. sum of single

guns
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Theoretical bubble frequecies fit nicely with measured data



M1: Marine seismic sources

The source depth is varied from 3
to 40 m, and the distance
between the source and the
hydrophone is kept constant: Zsr
= 20m. Water depth is ¥~300 m .

Source volume: 600 cubic inch Bolt
Firing pressure: 2000 psi

TC4047 hydrophone

ROSE 2013



inch air gun creates a big bubble

Firing a 600 cubic




Bubble is not perfectly sperical




Band pass filtered (0-2-30-50 Hz) signatures

SSSSSS

Source depth (m)

)
}_-
7

)

}

? "
— —

Bubble time period decreases with increasing source
depth => more low frequencies for shallow source —
[ & | ) ') | |
) ! ﬂ \ 1 | |

| >
= \33
l’ | &

Time (ms)

=}
[
\
f

& 8
| | |
e— e
|
I |
] 8

Notice: no damping between first and second bubble — then pronounced damping



Amplitude

Farfield spectra for various source depths
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The data has been deghosted and THEN ghosted to estimate the farfield signature

Maxima occurs for f=n/(bubble time period), n=1,2,3..



Scaled farfield spectra for various source depths
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Analysis window: 0-4 second
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Amplitude

Estimated notional source spectra for various source
depths (0-4 s)

350~
3m 75m

300+~ i

40 m
250~ J

VNS

N

o

o
\

-

9)

o
I

5 10
Frequency (Hz)

Bubble time period for 3 m source depth =0.16 s =>f=1/0.16 Hz = 6.25 Hz




