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• Quantifying the full polar anisotropy (transverse 
isotropy) of sand by measuring the Thomsen 
parameters ε, γ and δ. 

 

• Attempt to validate that 'Eta (η)'  

 

 

is insensitive to the state of fluid saturation  

Objectives 



Sample 

Sample: Ottawa sand (40/70) 

 

 

Dry sample: Oven dried at 110˚C and vacuumed 
during test  

 

Saturated sample: Saturated with 3.5wt% NaCl brine  



Stress Path 
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Triaxial Setup  

•  Confining pressure monitored 

• P-wave transducer at 0˚, 20˚, 37˚, 

47˚, 68˚ and 90˚ along with S-wave 

transducer at 0˚ and 90˚.  

•  Dimension of the sample:  

• Diameter: 38mm 

• Height: 60-65mm 



Results 



C33 : Under uniaxial  strain condition 
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 Static stiffness is independent of saturation  
 Dynamic stiffness is strongly dependent of saturation 



K (Bulk modulus) : Under hydrostatic stress  
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K (Bulk modulus) : Under hydrostatic stress  

0

2

4

6

8

0 2 4 6 8 10 12

B
u

lk
 m

o
d

u
lu

s 
(G

P
a)

 

Net axial stress (MPa) 

 Static stiffness is independent of saturation  

 Dynamic stiffness is strongly saturation dependent 

 Adding fluid effect using Biot, with static bulk modulus 
corresponding to the dynamic bulk modulus. 

 Correcting bulk modulus for anisotropy  have little effect. 



C44 : Under uniaxial  strain condition 
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C66 : Under uniaxial  strain condition 
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Shear stiffness : Under uniaxial  strain condition 
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 Shear stiffnesses are not independent of saturation 

 The difference in stiffness between dry and saturated is higher for 
axial shear stiffness. 



C44 : Under hydrostatic stress 
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C66 : Under hydrostatic stress 
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C66 : Under hydrostatic stress 
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 Unlike uniaxial strain condition, Shear stiffness for both loading and 
unloading for dry sands are identical.  

 Stiffness during Loading and unloading is identical for saturated  sand 

 Shear stiffnesses during loading are not same for dry and saturated 
sand. However, they are quite close during unloading.  
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Conclusions 

Under hydrostatic stress, anisotropic parameters are 
moderately or not sensitive to stress, indicating lithological 
origin of anisotropy. 

 

Under uniaxial strain condition, stress induced velocity 
anisotropy is strongly evident.  

 

 Saturation appear to have unexpected influence on gamma  
and eta. The epsilon reduced by saturation.  



Conclusions 

 

 Saturation dependent shear moduli remains unexplained. This 
could also be the cause of the discrepancy between the 
observed saturation dependence of η and the insensitivity 
suggested by Thomsen (2012).  

 

 Further work is required to investigate various possible 
sources of discrepancy between the experiment and the 
theory.  
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