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• Quantifying the full polar anisotropy (transverse 
isotropy) of sand by measuring the Thomsen 
parameters ε, γ and δ. 

 

• Attempt to validate that 'Eta (η)'  

 

 

is insensitive to the state of fluid saturation  

Objectives 



Sample 

Sample: Ottawa sand (40/70) 

 

 

Dry sample: Oven dried at 110˚C and vacuumed 
during test  

 

Saturated sample: Saturated with 3.5wt% NaCl brine  



Stress Path 

-4

0

4

8

12

16

20

0 10 20 30 40

S
tr

es
s/

P
re

ss
u

re
 (

M
P

a
) 

Time (Hours) 

Axial stress Confining pressure Pore pressure

Saturated Dry 

Uniaxial 
strain 

Hydrostatic 
stress 

Hydrostatic 
stress 

Uniaxial 
strain 



Triaxial Setup  

•  Confining pressure monitored 

• P-wave transducer at 0˚, 20˚, 37˚, 

47˚, 68˚ and 90˚ along with S-wave 

transducer at 0˚ and 90˚.  

•  Dimension of the sample:  

• Diameter: 38mm 

• Height: 60-65mm 



Results 



C33 : Under uniaxial  strain condition 
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 Static stiffness is independent of saturation  
 Dynamic stiffness is strongly dependent of saturation 



K (Bulk modulus) : Under hydrostatic stress  
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K (Bulk modulus) : Under hydrostatic stress  
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Net axial stress (MPa) 

 Static stiffness is independent of saturation  

 Dynamic stiffness is strongly saturation dependent 

 Adding fluid effect using Biot, with static bulk modulus 
corresponding to the dynamic bulk modulus. 

 Correcting bulk modulus for anisotropy  have little effect. 



C44 : Under uniaxial  strain condition 
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C66 : Under uniaxial  strain condition 
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Shear stiffness : Under uniaxial  strain condition 

0.5

0.7

0.9

1.1

1.3

0 5 10 15 20

C
6

6
 (

G
P

a)
 

Net axial stress (MPa) 

0.5

0.7

0.9

1.1

1.3

0 5 10 15 20

C
4

4
 (G

P
a)

 

Net axial stress (MPa) 

 Shear stiffnesses are not independent of saturation 

 The difference in stiffness between dry and saturated is higher for 
axial shear stiffness. 



C44 : Under hydrostatic stress 
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C66 : Under hydrostatic stress 
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C66 : Under hydrostatic stress 
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 Unlike uniaxial strain condition, Shear stiffness for both loading and 
unloading for dry sands are identical.  

 Stiffness during Loading and unloading is identical for saturated  sand 

 Shear stiffnesses during loading are not same for dry and saturated 
sand. However, they are quite close during unloading.  
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Conclusions 

Under hydrostatic stress, anisotropic parameters are 
moderately or not sensitive to stress, indicating lithological 
origin of anisotropy. 

 

Under uniaxial strain condition, stress induced velocity 
anisotropy is strongly evident.  

 

 Saturation appear to have unexpected influence on gamma  
and eta. The epsilon reduced by saturation.  



Conclusions 

 

 Saturation dependent shear moduli remains unexplained. This 
could also be the cause of the discrepancy between the 
observed saturation dependence of η and the insensitivity 
suggested by Thomsen (2012).  

 

 Further work is required to investigate various possible 
sources of discrepancy between the experiment and the 
theory.  
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