Temperature Effects on Wave Velocities and Compaction of Shales

Andreas Bauer, Rune M. Holt, Jørn Stenebråten, Erling Fjær, Audun Bakk, Leni Marsen Marøen

Acknowledgements: Sponsors of "Rock Physics for Exploration and Reservoir Monitoring" JIP: BP, ConocoPhillips, Det norske, Shell, StatoilHydro, and Total

Why are temperature effects important?

- ⇒ Heating of reservoir
- ⇒ Heat diffusion into caprock
- Thermally induced stress (and pore-pressure) changes
- ⇒ Possible risks: fault reactivation, leakage, interface slip

Fluid injection (e.g. CO_2) CO_2 (T = 20°C)

- ⇒ Temperature difference between injected CO₂ and surrounding formation
- Thermally induced pore-pressure and stress changes around injector wells may result in rock failure and leakage of CO₂

Why are temperature effects important?

Heating induces:

 Elastic rock expansion and thermal stresses

> Understood; expansion coefficients should be measured with core material

 Pore pressure increase in lowpermeability rocks

> In shales, heat diffusion is faster than pore-pressure diffusion; thermo-poroelasticitiy established but measurement of coupling coefficients recommended (A. Bauer et al., 2012)

Temperature dependence of ultrasonic velocities

- For the temperatures range of interest (T < 200°C), the stiffness of rock minerals (quartz) changes only slightly
- If the dry rock does not show any significant temperature dependence the temperature dependence of the saturated-rock stiffness (low-frequency limit) may be described by the Gassmann model:

$$K_{sat} = K_{dry} + \frac{\left(1 - \frac{K_{dry}}{K_{gr}}\right)}{\frac{\phi}{K_{fl}(T)} + \frac{(1 - \phi)}{K_{gr}} - \frac{K_{dry}}{K_{gr}^2}} ; \quad G_{sat} = G_{dry}$$

• Velocities are given by:

 K_{sat} : Bulk modulus of saturated rock K_{dry} : Bulk modulus of rock frame K_{gr} : Bulk modulus of grains K_{fl} : Fluid modulus G_{sat} : Shear modulus of saturated rock G_{dry} : Shear modulus of rock frame ϕ : Porosity ρ : Density of saturated rock

$$V_{p}(T) = \sqrt{\frac{K_{sat}(T) + \frac{4}{3}G_{sat}(T)}{\rho(T)}} ; V_{s}(T) = \sqrt{\frac{G_{sat}(T)}{\rho(T)}}$$

Temperature dependence of ultrasonic velocities

- For many rocks, <u>deviations from the Gassmann model</u> were observed for both V_p and V_s .
- For water-saturated Castlegate sandstone, it was shown the Gassmann model provides a food description if the temperature dependence of the dynamic <u>rock stiffness for a small but non-</u> <u>vanishing water saturation</u> is taken as "dry-rock" stiffness (drainedrock stiffness)

Bauer et al., Euroconference 2011

Temperature dependence of ultrasonic velocities in shales

Core-plug measurements with subsurface shales covering a wide range of depths, porosity, and clay content:

Shale	Age	Depth	Porosity	Clay cont.
		[mTVD]	[%]	[wt%]
#1	Paleocene	2620	32	84
#2	Upper Miocene	1730	40	42
#3	Miocene	1750	53	40
#4	Upper Jurrasic	2390	12	73

Temperature dependence of ultrasonic velocities in shales

Gassmann model with temperature-independent dry-rock moduli:

- ♥ Strong deviation from experimental data
- Gassmann model does not take bound water into account

SINTEF's Shale rock physics (RP) model accounts for bound water. Temperature sensitivity of the boundwater stiffness is not known; assume same sensitivity as that of ice ⇒ trend in the right direction, still strong deviations

SINTEF

SINTEF Petroleum Research

Temperature dependence of ultrasonic velocities in shales

Emperical approach:

Apply Gassmann model and assume linear temperature dependences of drained-rock moduli:

$$K_{dry} = K_{dry,0} \left(1 - C_K \cdot \Delta T \right)$$

 $G_{dry} = G_{dry,0} \left(1 - C_G \cdot \Delta T \right)$

- $\stackrel{\text{\tiny $\&$}}{\hookrightarrow}$ Good fit of experimental data for $C_{K} \approx 1.0 - 1.4 \cdot 10^{-2} \text{ K}^{-1}$, and $C_{K} \approx 0.1 - 0.4 \cdot 10^{-2} \text{ K}^{-1}$.
- Bound-water effects, fluid-rock interaction, etc. included in drained-rock modulus.

Temperature dependence of shale velocities – Dispersion effects

Is the temperature dependence of ultrasonic velocities the same as that of sonic and seismic velocities?

- There is evidence for <u>relatively</u> <u>large velocity dispersion in shales</u>
- It is likely that velocity dispersion is temperature dependent (previous compaction tests have shown smaller temperature dependence of static stiffness as compared to dynamic drainedrock stiffness)
- Need for temperature-dependent dispersion measurements

Duranti, Ewy, Hofmann (2006)

Thermally induced compaction of shales

Project work at NTNU Fall 2012 by Leni Marøen

w/ assistance from Eyvind F Sønstebø, Olav-Magnar Nes, Liang Wang (SINTEF Energy), Andreas Bauer & Rune M Holt

Motivation

- Significant contraction has been observed at elevated temperature (< 100°C) in previous shale experiments at SINTEF <u>artefact or reality?</u>
- Thermally induced compaction could have significant impact on caprock integrity and wellbore stability

Thermally induced compaction of shales

Literature study

Thermal compaction of reconstituted clay (Ghahremannejad, 2003): Largely plastic behaviour during initial heating, elastic behaviour during cooling and reheating

Stress history dependent thermal behaviour of kaolin clay during heating; initial consolidation at 0.6 MPa (Cekerevac et al., 2004) Normally consolidated samples show contraction; heavily overconsolidated samples show dilatancy.

Thermally induced compaction of Pierre shale

Experimental observations

Drained heating of Pierre Shale @ 7 MPa (isotropic) external stress & 5 MPa pore pressure within the SMASH apparatus

Upon heating, the sample expands, followed by time-dependent irreversible compaction

Thermally induced compaction of Pierre shale

Experimental observations

Strain data corrected with the thermal expansion coefficient, estimated from the cooling stages (when elastic behaviour can be assumed) ($\alpha_{T,vol} = 19 \cdot 10^{-5} \text{ °C}^{-1}$)

Thermally induced compaction of Pierre shale

P-Wave Velocity

- <u>Strong velocity increase</u> associated with thermally induced compaction
- Velocity drops during initial heating
- Significant velocity decrease at 120 °C indicates loss of "cementation"

SINTEF's Shale Rock Physics model: Choosing K_{bw} =3 & G_{bw} = 2.5 GPa, v_p (at room temperature) is estimated to 2383 m/s (v_s =1024 m/s) for 19 % porosity Pierre Shale Reducing porosity to 14 % (as at 120 °C), v_p increases to 2708 m/s (without changing K_{bw} & G_{bw})

Conclusions

Thermal Rock Physics of Shales

- Relatively strong reduction of V_p and V_s with temperature (in the absence of thermally-induced compaction)
- Temperature dependence can be described by Gassmann theory by assuming a temperature-dependent drained-rock stiffness accounting for bound-water effects and rock-fluid interaction; better understanding needed
- Not clear if sonic and seismic velocity show same temperature dependence as ultrasonic velocities; need for velocity-dispersion measurements

Thermally-induced compaction of shale

- Significant thermally-induced compaction observed during heating of shale core plugs
- Not clear to what degree thermally-induced compaction would occur in the subsurface; might have significant impact on caprock integrity and wellbore stability; better understanding and more systematic studies needed.

