

Double-diffraction approximation of the feasible Green's function in geometrical shadow zones

Alena Ayzenberg, NTNU Supervisor Alexey Stovas

Outline

EAGE 2013

Introduction

Theory

Model

Test 1: V-shaped boundary

Test 2: U-shaped boundary

Test 3: W-shaped boundary

Conclusions

Introduction

Objectives

Understanding of the wave structure of the feasible Green's function (A. Aizenberg and A. Ayzenberg, 2009)

Comparison of the feasible Green's function with theory of Jones (1973)

Testing on 3 models

Theory

feasible Green's function

$$\mathbf{F} = \sum_{n=0}^{\infty} (\mathbf{P}\mathbf{A})^n \mathbf{G}$$

conventional Green's function

1-order diffraction correction of Green's function

 $\mathbf{F} = \mathbf{G} + \mathbf{P} \mathbf{A} \mathbf{G}$

Kirchhoff propagation operator

$$\mathbf{P}(\mathbf{s},\mathbf{s}')\langle\ldots\rangle = \iint_{\mathbf{s}} \mathbf{G}(\mathbf{s},\mathbf{s}') \mathbf{N}_{\mathbf{s}'} \langle\ldots\rangle dS(\mathbf{s}')$$

absorption operator

$$\mathbf{A}(\mathbf{s},\mathbf{s}')\langle\ldots\rangle = \iint_{\mathbf{S}} h(\mathbf{s},\mathbf{s}') \mathbf{G}(\mathbf{s},\mathbf{s}') \mathbf{N}_{\mathbf{s}'} \langle\ldots\rangle dS(\mathbf{s}')$$

$$\overset{s}{\underset{\text{function}}{\overset{s}{\underset{function}}{\overset{s}{\underset{func$$

Shadow function

Model

$$v = 2.0 \text{ km}/\text{s}$$

$$\rho = 2.1 \text{ g}/\text{cm}^{3}$$
wavelet $e^{-(2\tau)^{2}} \cos(2\pi\tau)$

$$\tau = t/T - 2, \quad T = 0.032 \text{ s}$$

$$\lambda = 0.064 \text{ km}$$

$$f = 31.25 \text{ Hz}$$
define $DAC = \frac{F}{G}$

upper
$$z = 0.41(x_0 - x)$$

lower $z = -0.41(x_0 - x)$

$$x_0 = 4$$

 $\mathbf{F}_{V}^{(1)} \cong \mathbf{G} + \mathbf{D}_{V}^{(1)}, \quad \mathbf{D}_{V}^{(1)} = \mathbf{P}_{x2} \mathbf{A}_{21} \mathbf{G}_{1}$ *relative error in amplitudes* $\leq 4\%$ *absolute error in traveltime* $\approx 0.002 \, s$

$$\mathbf{A}(\mathbf{s},\mathbf{s}') = \begin{bmatrix} \mathbf{A}(\mathbf{s}_1,\mathbf{s}_1') & \mathbf{A}(\mathbf{s}_1,\mathbf{s}_2') \\ \mathbf{A}(\mathbf{s}_2,\mathbf{s}_1') & \mathbf{A}(\mathbf{s}_2,\mathbf{s}_2') \end{bmatrix}$$

$$\mathbf{A}(\mathbf{s},\mathbf{s}') \cong \begin{bmatrix} \mathbf{O} & \mathbf{O} \\ \mathbf{A}(\mathbf{s}_2,\mathbf{s}_1') & \mathbf{O} \end{bmatrix}$$

line 1 z = -1

line 2 z = -2

double edge diffraction wave $DAC^{(2)}(4) = 0.125$ $DAC(4) = DAC^{(1)}(4) + DAC^{(2)}(4) = 0.625$

radius of curvature 5 km at 4.0

Test 2: U-shaped boundary. Creeping wave

 $\mathbf{P}_{x2}\mathbf{A}_{22}\mathbf{G}_{2}$

$$\mathbf{F}^{(1)} = \mathbf{G} + \mathbf{D}^{(1)}$$

$$\mathbf{D}^{(1)} = \mathbf{D}^{(1)}_{S_2 S_1} + \mathbf{D}^{(1)}_{S_4 S_3} + \mathbf{D}^{(1)}_{S_4 S_2}$$

$$\mathbf{D}_{S_2S_1}^{(1)} = \mathbf{P}_{x\,2} \ \mathbf{A}_{21} \ \mathbf{G}_{1}$$

$$\mathbf{D}_{S_4S_3}^{(1)} = \mathbf{P}_{x4} \mathbf{A}_{43} \mathbf{G}_3$$

$$\mathbf{D}_{S_4S_2}^{(1)} = \mathbf{P}_{x4} \mathbf{A}_{42} \mathbf{G}_2$$

$$\mathbf{A}(\mathbf{s},\mathbf{s}') = \begin{bmatrix} \mathbf{A}(\mathbf{s}_{1},\mathbf{s}_{1}') & \mathbf{A}(\mathbf{s}_{1},\mathbf{s}_{2}') & \mathbf{A}(\mathbf{s}_{1},\mathbf{s}_{3}') & \mathbf{A}(\mathbf{s}_{1},\mathbf{s}_{4}') \\ \mathbf{A}(\mathbf{s}_{2},\mathbf{s}_{1}') & \mathbf{A}(\mathbf{s}_{2},\mathbf{s}_{2}') & \mathbf{A}(\mathbf{s}_{2},\mathbf{s}_{3}') & \mathbf{A}(\mathbf{s}_{2},\mathbf{s}_{4}') \\ \mathbf{A}(\mathbf{s}_{3},\mathbf{s}_{1}') & \mathbf{A}(\mathbf{s}_{3},\mathbf{s}_{2}') & \mathbf{A}(\mathbf{s}_{3},\mathbf{s}_{3}') & \mathbf{A}(\mathbf{s}_{3},\mathbf{s}_{4}') \\ \mathbf{A}(\mathbf{s}_{4},\mathbf{s}_{1}') & \mathbf{A}(\mathbf{s}_{4},\mathbf{s}_{2}') & \mathbf{A}(\mathbf{s}_{4},\mathbf{s}_{3}') & \mathbf{A}(\mathbf{s}_{4},\mathbf{s}_{4}') \end{bmatrix}$$

$$\mathbf{A}(\mathbf{s},\mathbf{s}') = \begin{bmatrix} \mathbf{O} & \mathbf{O} & \mathbf{O} & \mathbf{O} \\ \mathbf{A}(\mathbf{s}_2,\mathbf{s}_1') & \mathbf{O} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}(\mathbf{s}_4,\mathbf{s}_2') & \mathbf{A}(\mathbf{s}_4,\mathbf{s}_3') & \mathbf{O} \end{bmatrix}$$

(1,2)

(3,4)

(2,4)

 $\mathbf{D}_{S_2S_1}^{(1)} = \mathbf{P}_{x2} \mathbf{A}_{21} \mathbf{G}_1 \qquad \mathbf{D}_{S_4S_3}^{(1)} = \mathbf{P}_{x4} \mathbf{A}_{43} \mathbf{G}_3 \qquad \mathbf{D}_{S_4S_2}^{(1)} = \mathbf{P}_{x4} \mathbf{A}_{42} \mathbf{G}_2$

G
$$\mathbf{D}^{(1)} = \mathbf{D}^{(1)}_{S_2S_1} + \mathbf{D}^{(1)}_{S_4S_3} + \mathbf{D}^{(1)}_{S_4S_2} \quad \mathbf{F}^{(1)} = \mathbf{G} + \mathbf{D}^{(1)}$$

Conclusions

- 3 numerical models are used to test the representation of the feasible Green's function
- The 1-order diffraction approximation of the feasible Green's function corresponds to the double-diffraction theory of Jones (1973)
- The 1-order term of the feasible Green's function expresses single and double edge waves and creeping wave
- It is shown that 1-order diffraction at V-shaped boundary is equivalent to double knife-edge diffraction at two halfscreens with the near edges

Acknowledgements

I would like to thank

Alexey Stovas (NTNU)
Kamill Klem-Musatov, Arkady Aizenberg and Anton Duchkov (IPGG SB RAS, Russia)
Jan Pajchel and Milana Ayzenberg (Statoil ASA, Norway)
Nikolay Zyatkov (NSU, Russia)
Fredrik Andersson (University of Lund, Sweden)