Results 000000 0000000000000000 Conclusion 0 0

Elastic Time-lapse Full Waveform Inversion

Espen Birger Raknes, Wiktor Weibull, and Børge Arntsen

Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: espen.raknes@ntnu.no

> ROSE Meeting 2013 April 23rd 2013

Results 000000 00000000000000 Conclusion 0 0

Outline

Time-lapse Full Waveform Inversion

A Quick Overview of Full Waveform Inversion Time-lapse Full Waveform Inversion

Results

Synthetic Example Real Example

Conclusion

Closing Remarks Acknowledgements References

Results 000000 000000000000000

A Quick Overview of Full Waveform Inversion Overall Goal

Find an Earth model from which it is possible to create synthetic data that is close to some measured data

Define $S(\mathbf{m})$ as the measure between synthetic and measured data. The FWI is then the problem

 $\mathop{\arg\min}_{\mathbf{m}} S(\mathbf{m})$

Solved using an iterative method

$$m_{k+1} = m_k - \alpha_k g_k,$$

- m_k model at iteration k
- g_k gradient of $S(\mathbf{m})$ at iteration k
- α_k step length at iteration k

Results 000000 00000000000000

Schematic View of FWI

Time-lapse Full Waveform Inversion $\bigcirc \bigcirc \bigcirc \bigcirc$

Results 000000 00000000000000

Schematic View of Implementation

Results 000000 0000000000000 Conclusion 0

Time-lapse FWI

Goal

Use full waveform inversion to quantify changes in time for parameters affecting wave propagation.

Different ways of doing this:

Approach 1: Two independent inversions og base and monitor

- Approach 2: Invert first for base, and use the end model as input for monitor
- Approach 3: Invert first for base, and use the end model in combination with a data modification as input for monitor

The time-lapse image is found by comparing the two end models.

Results 000000 00000000000000

Approach 1

Definition: l(m, d)
is the inverted model
using m as initial model
and d as observed data.

Time-lapse Full Waveform Inversion ${}^{\circ\circ\circ}_{\circ\circ\circ}_{\circ\circ\circ\circ}$

Results 000000 00000000000000 Conclusion 0 0

Approach 2

Time-lapse Full Waveform Inversion $_{\circ\circ\circ}_{\circ\circ\circ\bullet}$

Results 000000 00000000000000 Conclusion 0 0

Approach 3

Conclusion 0 0

Synthetic Example

- The test model is an elastic model of the Gullfaks field.
- Base model: Reservoir filled with oil
- Monitor model: Reservoir filled with water
- P-wave velocity change locally within reservoir: 0-153 m/s
- Marine streamer survey with 370 shots and 6 km streamer length
- The streamer has 300 receivers which are separated by 20 m
- The shot interval is 20 m

True Model

Results 000000

True Model

Initial Model

Time-Lapse Image Approach 1

Time-Lapse Image Approach 2

Results 000000 Conclusion 0 0

Time-Lapse Image Approach 3

Conclusion 0 0

Real Example

- Time-lapse data from the Norwegian North Sea
- Base dataset accuired in 1988 and monitor dataset in 1990
- Between the dataset the field was exposed to a subsurface gas leakage in one of the producing wells
- Marine streamer survey with 230 shots and 1253 m streamer length
- The streamer had 95 receivers separated by 12.5 m
- Shot intervall 12.5 m

From Acoustic to Elastic FWI

We are inverting for P-wave velocities, leaving density and S-wave velocity constant during the inversion.

The initial model is obtained using wave equation migration analysis (WEMVA).

To obtain the S-wave velocity we use the following empirical V_p/V_s relation [Mavko et al., 2009]

 $V_s = 0.862V_p - 1.172.$

 Conclusion 0 0

Source Estimation

The source is estimated using the FWI method, and the same source is used in all shots.

QC: Elastic Inversion - First iteration

Real data

Synthetic data

Residual

QC: Elastic Inversion - Last iteration

Real data

Synthetic data

Residual

Results 000000 00000000000000000 Conclusion 0

QC: Acoustic Inversion - Last iteration

Real data

Synthetic data

Residual

Results 000000 0000000000000000 Conclusion 0 0

Acoustic Time-Lapse Image: Approach 1

 Conclusion o o

Elastic Time-Lapse Image: Approach 1

 Conclusion o o

Acoustic Time-Lapse Image: Approach 2

 Conclusion 0 0

Elastic Time-Lapse Image: Approach 2

 Conclusion 0 0

Acoustic Time-Lapse Image: Approach 3

Results 000000 0000000000 Conclusion 0 0

Elastic Time-Lapse Image: Approach 3

Conclusion

Conclusions

- Full waveform inversion can be used to quantify time-lapse changes in the subsurface
- Elastic inversion is favourable over acoustic inversion
- Source estimation results in different source signatures for acoustic and elastic inversion
- Several artifacts appear in the time-lapse images that must be studied further. Add regularization?
- Good repeatability in the data is important for time-lapse full waveform inversion
- Modeling in 2D while data is 3D: No geometrical spreading. May improve results by inverting in 3D.

Results 000000 0000000000000 Conclusion \circ

Acknowledgements

We thank the BIGCCS centre, the ROSE consortium and Statoil Petroleum AS for financing this research.

Results 000000 000000000000000

Conclusion ° °

References I

- Biondi, B., C. Deutsch, R. Gundesø, D. Lumley, G. Mavko, T. Mukerji, J. Rickett, and M. Thiele, 1996, Reservoir monitoring: A multi-disciplinary feasibility study: SEG Technical Program Expanded Abstracts 1996, 1775–1778.
 - Johnston, D., R. McKenny, J. Verbeek, and J. Almond, 1998, Time-lapse seismic analysis of fulmar field: The Leading Edge, **17**, 1420–1428.

- Liu, F., L. Guasch, S. A. Morton, M. Warner, A. Umpleby, Z. Meng, S. Fairhead, and S. Checkles, 2012, 3-d time-domain full waveform inversion of a valhall obc dataset: SEG Technical Program Expanded Abstracts 2012, 1–5.
- Lumley, D., 2010, 4d seismic monitoring of co2 sequestration: The Leading Edge, **29**, 150–155.
- Lumley, D., D. C. Adams, M. Meadows, S. Cole, and R. Wright, 2003, 4d seismic data processing issues and examples: SEG Technical Program Expanded Abstracts 2003, 1394–1397.
- Mavko, G., Mukerji, T., Dvorkin, J., 2009, The Rock Physics Handbook, Cambridge University Press.

Results 000000 000000000000000 Conclusion ° °

References II

- Nocedal, J., and S. J. Wright, 2006, Numerical optimization, second ed.: Springer Science+ Business Media, LLC.
- Routh, P., G. Palacharla, I. Chikichev, and S. Lazaratos, 2012, Full wavefield inversion of time-lapse data for improved imaging and reservoir characterization: SEG Technical Program Expanded Abstracts 2012, 1–6.
- Routh, P. S., and P. D. Anno, 2008, Time-lapse noise characterization by inversion: SEG Technical Program Expanded Abstracts 2008, 3143–3147.
- Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, **49**, 1259–1266.
- Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, **74**.
- Weibull, W., B. Arntsen, and E. Nilsen, 2012, Initial velocity models for full waveform inversion: SEG Technical Program Expanded Abstracts 2012, 1–4.

Zheng, Y., P. Barton, and S. Singh, 2011, Strategies for elastic full waveform inversion of time-lapse ocean bottom cable (obc) seismic data: SEG Technical Program Expanded Abstracts 2011, 4195–4200.