Rock Physics Analysis and Time-Lapse Imaging of the Induced Chemo-Mechanical Processes upon CO₂ injection into Reservoir Rocks

> Tiziana Vanorio Stanford Rock Physics Laboratory

4D Seismic: Traditional Concept

 time-lapse geophysical monitoring is based on the assumption that the time-variant changes in the images of seismic velocity depend on the variation of the properties of the rock frame and the fluid permeating it in response to changes in physical parameters such saturation, pore fluid pressure, temperature, and stress.

Fluid Substitution: Gassmann Model

Changes in rock seismic velocity and impedance are caused by a **purely mechanical interaction between the fluid and the rock frame.**

CO₂ Injection

 Chemical Disequilibria: Fast and Timedependent...

After <u>two days</u> from the beginning of the injection an increased concentration of cations such as **Calcium**, **Iron**, and **Manganese** are measured at the observation well.

Laboratory Program on CO₂ Injection

- Comprehensive Time-Lapse monitoring of:
- changes in transport, elastic, and geochemical properties resulting from chemo-mechanical processes induced upon CO₂ injection
 - precipitation
 - dissolution
- changes in the rock microstructure: Time-Lapse high resolution imaging to quantify pore network modifications
 - SEM images
 - Ct-scan images

Experimental Design

- Injections are performed under reservoir pressure conditions : P_c up to 15-55 MPa and P_f up to 15-28MPa
 - Magnitude and location of changes

Rock Samples

Micritic Carbonates

Pre-Injection Characterization

Pre-Injection Characterization

Pore Space and Its Connectivity

Pore space in blue

Grayscale opacity Reduced to show Pore space

Experimental Protocol

Monitored Properties

 Chemical composition (pH, Cation Concentration) of the outlet brine (dissolution)

$$\Delta \Phi_c(t_i) = \frac{\sum_{i=1}^{n} \Delta m_i}{V_{bulk} * \rho_{\min}} = \frac{V_{inj} f_{(t_i)} \sum_{i=1}^{n} C_n^{Cation} * M_{w\min}}{V_{bulk} * \rho_{\min}}$$

Velocity-Injected Pv-Pressure

Velocities of the dry rock frame after injection

Porosity-Injected Pv-Pressure

Time-Lapse SEM

Time-Lapse SEM

Selective Dissolution

Before CO₂ injection

After CO₂ injection

Post-Injection Characterization

Conclusions

Experimental data and pore scale images show that the seismic response of CO₂ injection in brine-rock systems is far from being a pure fluid-substitution problem.

 Fluid - rock chemical interactions affect the acoustic and transport properties of rock frame. This interaction implies a time-dependence of the properties of the rock frame in addition to those of the fluid permeating the rock (saturation, pressure...).

Conclusions

- Experiments shows where changes are likely to occur:
 - cement dissolution at the grain contact → elastic modui
 - porosity/density **→** elastic moduli
 - the fraction of complaint pores seems to increase with injection as carbonates become more sensitive to pressure upon injection

Where Are We Going?

Where Are We Going?

Carbonate Rock Physics

Heterogeneous Microstructure

Synthetic Samples

Acknowledgments

- Stanford Global Climate and Energy Project Award 55
- DOE NETL Project Award DE-FE0001159
- Ingrain Inc., Houston, TX
- ExxonMobil Upstream Research Co, TX
- Petrobras, Brasil
- Stanford Rock Physics & Borehole Consortium

Conclusions

• In carbonate rocks, velocity decreases mainly because of the formation of new, more complaint pores. Carbonates become more sensitive to pressure upon injection; i.e., the fraction of complaint pores increases.

 Sandstones experience larger decrease in velocity as well as larger compaction than carbonates; velocity decreases because of dissolution of cement at the grain contacts.

CO₂ Injection in Sandstones

×

30

×

Injected Pore Volumes

60

X

90

×20 MPa

X

1850

1750

0

Velocities of the dry rock frame after injection

Time-Lapse SEM

Post-Injection Characterization

Time-Lapse NMR

T2 is inversely proportional to Surface/Volume ratio of the pore space

Grombacher and Vanorio, 2011- Geophysics

Time-Lapse SEM

