

April 23, 2012

Study on the stress dependency of elastic and non-elastic processes in a dry sandstone

Anna M. Stroisz, NTNU Erling Fjær, NTNU & SINTEF

Causes for the stress-sensitivity of wave velocity in sandstone

Separate elastic and non-elastic processes activated in the rock structure under stress

Difference between static and dynamic modulus

Difference can be explained to the processes activated in the rock structure under stress

Processes activated in the rock framework under stress (idealized examples):

Elastic processes

- Closing/opening of cracks (Fig. a)

Non-elastic processes

- Friction controlled shear sliding of internal surfaces in contact resulting in e.g. opening/closing of wing-cracks (Fig. b, c)
- Crushing of asperities at grain contacts or crack faces (Fig. d) only during loading

Mechanic system:

Triaxial cell (MessTek)

- · Axial and radial stress
- Axial and radial strain

Acoustic system:

Ultrasonic transducer

- · Single-sine pulse
- Frequency 500 kHz
- P- and S-wave
- Waves propagate along the major external stress
 i.e. axial stress

Scheme of experimental system

Samples:

- Four rock samples have been tested
- Two samples of Castlegate sandstone and two of Berea sandstone

Castlegate sandstone

- Composition: 70% quartz, 30%
 feldspar and other rock fragments
- · No clay
- Porosity ~ 26%

Berea sandstone

- Composition: 80% quartz, 12%
 feldspar and other rock fragments
- Clay ~ 8%
- Porosity ~ 19%
- All samples were dry
- Samples prepared as cylindrical plugs, size about 1.5"/3" (diameter/length)

Stress path

- Uniaxial compaction (K₀ mode) test
- Stepwise stress change
- Loading and unloading paths repeated twice

Stress path details

Stepwise path due to large-scale stress changes includes information about the elastic and non-elastic effects

Oscillatory periods that represent small-scale stress changes reveals information about the elastic effects only

Velocity response on stress path

Berea sandstone

Uniaxial compaction

 $C_{33}\Big|^{static}
eq C_{33}\Big|^{dynamic}$

$$C_{33}\Big|^{static} = \frac{\Delta\sigma_z}{\Delta\varepsilon_z} = C_{33}^{ne} + C_{33}^{e}$$

$$C_{33}\Big|^{dynamic} = \rho \cdot V_{Pz}^2 = C_{33}^e$$

Static modulus elastic (*e*) & non-elastic (*ne*) processes

Dynamic modulus elastic (e) processes only Uniaxial compaction

$$C_{33} \Big|^{static}
ightarrow C_{33} \Big|^{dynamic}$$

The non-elastic compliance component S_{H}^{ne}

because

 $C_{33}^{ne} + C_{33}^{e} \succeq C_{33}^{e}$

Conclusions

- The stress-dependence of elastic waves is caused mainly by an elastic process, however the non-elastic processes become increasingly important at higher stress levels
- The difference between the static and the dynamic uniaxial compaction modulus can be ascribed to the same type of non-elastic effect during unloading
- Castlegate and Berea sandstone show significantly different stresssensitivity, which may be associated with structural differences

Acknowledgments

