Modeling and migration of dual-sensor marine seismic data (Work in progress)

Reynam Pestana ${ }^{1}$, Bjørn Ursin ${ }^{2}$ and Paul Stoffa ${ }^{3}$
${ }^{1}$ CPGG/UFBA and INCT-GP/CNPq, Salvador, Bahia, Brazil
${ }^{2}$ NTNU, Trondheim, Norway
${ }^{3}$ University of Texas, Austin, USA.

ROSE Meeting
22-23 April 2012
Trondheim, Norway

Dual-sensor towed streamer measures the pressure wavefield and the vertical velocity field, at the same spatial position.

For the pressure wavefield the two components are given as:

$$
P^{u p}=\frac{1}{2}\left(P-F V_{z}\right) \quad \text { and } \quad P^{\text {down }}=\frac{1}{2}\left(P+F V_{z}\right)
$$

where F is angle-dependent scaling factor and it is required because only V_{z} is recorded (Widmaier et al., EAGE/SEG, 2009).

Real example: Conventional streamer versus dual-sensor streamer

Cenventional streamer (top) and dual-sensor (botton)
The combination of the sensores allows the separation of the up- and down-going wavefields and thus the removal of the ghost effect. The removal of the ghost significantly enhances frequency content and (Widmaier et al., EAGE/SEG, 2009).

Wavefield separation - Extrapolation and imaging

The upgoing and downgoing pressure wavefields in the frequency-wavenumber domain can be written in a matrix form as

$$
\left[\begin{array}{c}
P^{\text {up }} \\
P^{\text {down }}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & -\frac{\rho \omega}{k_{z}} \\
1 & \frac{\rho \omega}{k_{z}}
\end{array}\right]\left[\begin{array}{c}
P \\
V_{z}
\end{array}\right]
$$

Extrapolation is based on the solution of the one-way wave equation. The one way wave equation in $\omega-x$ domain is:

$$
\left(\frac{\partial}{\partial z}-i \sqrt{\frac{\omega^{2}}{v^{2}}+\nabla}\right) P^{+}=0
$$

where ∇ is the Laplician operator.
For one-way algorithm, we can approximate the square-root by:
$\sqrt{\frac{\omega^{2}}{v^{2}}+\nabla}=$ Phase-Shift $\left(k_{x}, \omega\right)+$ Split Step $(x, \omega)+$ FFD (x, ω)

Wavefield separation - Extrapolation and imaging

Two-way propapator is a simples extension of the one-way propagation.
The two-way acoustic wave equation in the $\omega-x$ domain becomes (Zhang et at.,2005) then

$$
\left(\frac{\partial}{\partial z}-i \sqrt{\frac{\omega^{2}}{v^{2}}+\nabla}\right) P^{-}=\Gamma P^{+}
$$

where Γ is, in some sense, equivalent to a reflection coffecient and P^{-}is the upgoing wavefield.

One-way and two-way simulation

Two layer model - Snapshots

After proper extrapolation of the decomposed monochromatic wavefields to the desired depth level, an estimate of the reflection coefficient(s) can be obtained through the application of the classical $P^{u p} / P^{d o w n}$ imaging condition.

- Cross-correlation

$$
I_{1}(x, h)=\sum_{x_{s}} \sum_{\omega}\left(P^{\text {down }}\left(x-h, \omega ; x_{s}\right)\right)^{*} P^{u p}\left(x+h, \omega ; x_{s}\right)
$$

- Deconvolution

$$
I_{2}(x, h)=\sum_{x_{s}} \sum_{\omega} \frac{\left(P^{\text {down }}\left(x-h, \omega ; x_{s}\right)\right)^{*} P^{u p}\left(x+h, \omega ; x_{s}\right)}{\left\langle\left(P^{\text {down }}\left(x-h, \omega ; x_{s}\right)\right)^{*} P^{\text {down }}\left(x-h, \omega ; x_{s}\right)\right\rangle+\epsilon}
$$

where \langle.$\rangle stands for the smoothing in the image space in the x$ direction. Note, we obtain zero offset subsurface images when $h=0$.

BP-Dataset: One-way and two-way results

BP Dataset: One-way (PSPI) and RTM results

The wave equation can be transformed into two coupled first-order differential equations in the depth z, and one obtains:

$$
\frac{\partial}{\partial z}\binom{P}{\frac{\partial P}{\partial z}}=\left(\begin{array}{cc}
0 & 1 \\
-\left(\frac{\omega^{2}}{c^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right) & 0
\end{array}\right)\binom{P}{\frac{\partial P}{\partial z}}
$$

We can write in a compact notation the wave equation for the field vector $\psi=\left(P, \frac{\partial P}{\partial z}\right)^{T}$ as

$$
\frac{\partial \psi(\mathbf{x}, \omega)}{\partial z}=A \psi(\mathbf{x}, \omega)
$$

where the matrix A is given by:

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-\left(\frac{\omega^{2}}{c^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right) & 0
\end{array}\right)
$$

Assuming that the velocity c is constant as a function of depth with each layer z to $z+\Delta z$, the solution of this equation is given by:

$$
\psi(x, y, z+\Delta z, \omega)=e^{A \Delta z} \psi(x, y, z, \omega)
$$

For general case, the exponential term can be computed using Chebyshev expansion according to

$$
e^{A \Delta z}=\sum_{k=0}^{M} C_{k} J_{k}(R) T_{k}\left(\frac{A \Delta z}{R}\right)
$$

where $R=(\omega \Delta z) / c_{\text {min }}$ and $\mathrm{M}>\mathrm{R}$ (Tal-Ezer, 1984).

Tal-Ezer method - Coupled wave equation system

Depth model and velocity in the background

Tal-Ezer method - Coupled wave equation system

One-way PSPI method

Tal-Ezer method - Coupled wave equation system

High-cut filter $k_{\text {cut }}>\omega / c_{\max }$

Tal-Ezer method - Coupled wave equation system

High-cut filter $k_{\text {cut }}>\omega / c_{\text {max }}$ and taper filter

The linerized acoustic wave equation in the space-frequency domain can be written as the following system of coupled equations

$$
\left\{\begin{array}{l}
\nabla P(\mathbf{x}, \omega)-i \omega \rho \mathbf{V}(\mathbf{x}, \omega)=0 \\
\nabla \cdot \mathbf{V}(\mathbf{x}, \omega)-\frac{i \omega}{\rho c^{2}(\mathbf{x})} P(\mathbf{x}, \omega)=0
\end{array}\right.
$$

where ω denotes the temporal frequency, $\mathbf{x}=(x, y, z)$ the Cartesian coordinates, $\mathbf{V}=\left(V_{x}, V_{y}, V_{z}\right)$ is the particle velocity vector and P is the pressure.

Differential system in space-frequency domain

For the depth extrapolation problem it is useful to write these equations in terms of the vertical velocity V_{z} and pressure P.

$$
\left\{\begin{array}{l}
\frac{\partial P}{\partial z}=i \omega \rho V_{z} \\
\frac{\partial V_{z}}{\partial z}=\frac{i \omega}{\rho c^{2}(\mathbf{x})} P-\frac{\partial}{\partial x}\left(\frac{1}{i \omega \rho} \frac{\partial P}{\partial x}\right)-\frac{\partial}{\partial y}\left(\frac{1}{i \omega \rho} \frac{\partial P}{\partial y}\right)
\end{array}\right.
$$

In a simplified notation with the operator H_{2} as:

$$
H_{2}=\left(\frac{\omega}{c(\mathbf{x})}\right)^{2}+\rho \frac{\partial}{\partial x}\left(\frac{1}{\rho} \frac{\partial}{\partial x}\right)+\rho \frac{\partial}{\partial y}\left(\frac{1}{\rho} \frac{\partial}{\partial y}\right)
$$

We can write in a compact notation the wave equation for the field vector $\psi=\left(P, V_{z}\right)^{T}$ as

$$
\frac{\partial \psi(\mathbf{x}, \omega)}{\partial z}=A \psi(\mathbf{x}, \omega)
$$

The wave equation can be written as

$$
\frac{\partial \psi(\mathbf{x}, \omega)}{\partial z}=M \psi(\mathbf{x}, \omega)+Q \psi(\mathbf{x}, \omega)
$$

where the matrix M is chosen independent of z over the interval $z+\Delta z$,

$$
M=\left(\begin{array}{cc}
0 & i \omega \rho \\
-\frac{1}{i \omega \rho} H_{2}^{0} & 0
\end{array}\right)
$$

with

$$
H_{2}^{0}=\left(\frac{\omega}{c_{o}}\right)^{2}+\rho \frac{\partial}{\partial x}\left(\frac{1}{\rho} \frac{\partial}{\partial x}\right)+\rho \frac{\partial}{\partial y}\left(\frac{1}{\rho} \frac{\partial}{\partial y}\right)
$$

where c_{o} and ρ are constant,
and Q is given as:

$$
Q=\left(\begin{array}{cc}
0 & 0 \\
-\frac{w}{i \rho}\left(\frac{1}{c(x)^{2}}-\frac{1}{c_{0}^{2}}\right) & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
q & 0
\end{array}\right)
$$

Since M and $e^{-M z}$ commute we have (Maji and Kouri, 2011)

$$
\frac{\partial}{\partial z}(\exp (-M z) \psi(\mathbf{x}, \omega))=\exp (-M z) Q \psi(\mathbf{x}, \omega)
$$

Next, integrating from z to $z+\Delta z$, the exact solution is given by:

$$
\begin{aligned}
& \psi(x, y, z+\Delta z, \omega)=\exp (M \Delta z) \psi(x, y, z, \omega) \\
& +\int_{z}^{z+\Delta z} d z^{\prime} \exp \left[\left(z+\Delta z-z^{\prime}\right) M\right] Q\left(x, y, z^{\prime}, \omega\right) \psi\left(x, y, z^{\prime}, \omega\right)
\end{aligned}
$$

If the simple trapezoidal rule is used, we obtain

$$
\begin{aligned}
& \psi(x, y, z+\Delta z, \omega)=\left(I-\frac{\Delta z}{2} Q(x, y, z+\Delta z, \omega)\right)^{-1} \\
& \exp (M \Delta z)\left(I+\frac{\Delta z}{2} Q(x, y, z, \omega)\right) \psi(x, y, z, \omega)
\end{aligned}
$$

where I is the 2×2 identity matrix.
We note that due to the structure of Q, the computation of the inverse is trivial:

$$
\left(I-\frac{\Delta z}{2} Q(x, y, z+\Delta z, \omega)\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
\frac{\Delta z}{2} q(x, y, z+\Delta z, \omega) & 1
\end{array}\right)
$$

Using P and V_{z}, we obatin that

$$
\begin{aligned}
\binom{P}{V_{z}}_{z+\Delta z}= & \left(\begin{array}{cc}
1 & 0 \\
\frac{\Delta z}{2} q(x, y, z+\Delta z, \omega) & 1
\end{array}\right) \exp (M \Delta z) \\
& \left(\begin{array}{cc}
1 & 0 \\
\frac{\Delta z}{2} q(x, y, z) & 1
\end{array}\right)\binom{P}{V_{z}}_{z}
\end{aligned}
$$

When $P(x, y, z, \omega)$ and $V_{z}(x, y, z, \omega)$ are known, $P(x, y, z+\Delta z, \omega)$ and $V_{z}(x, y, z+\Delta z, \omega)$ can be obtained from this equation in a step by step process.

In order to eliminate the unstable evanescent component in the extrapolation procedure, we rewrite the M matrix via an eigen decomposition in the following way:

$$
M=L \Lambda L^{-1}
$$

where L represents the eigenvectores, and Λ is the eigenvalue matrix

$$
\Lambda=\left(\begin{array}{cc}
-i k_{z} & 0 \\
0 & i k_{z}
\end{array}\right)
$$

The vertical wavenumber k_{z} is

$$
k_{z}= \begin{cases}\sqrt{\left(\frac{\omega}{c}\right)^{2}-\left(k_{x}^{2}+k_{y}^{2}\right)}, & \text { if } \quad \sqrt{\left(k_{x}^{2}+k_{y}^{2}\right)} \leq\left|\frac{\omega}{c}\right|, \\ i \sqrt{\left(k_{x}^{2}+k_{y}^{2}\right)-\left(\frac{\omega}{c}\right)^{2}}, & \text { if } \quad \sqrt{\left(k_{x}^{2}+k_{y}^{2}\right)}>\left|\frac{\omega}{c}\right| .\end{cases}
$$

The eigenvector matrix of M may be chosen as (Claerbout, 1976; Ursin et al., 2012)

$$
L=\left(\begin{array}{cc}
1 & 1 \\
-\frac{1}{Z} & -\frac{1}{Z}
\end{array}\right)
$$

with inverse eigenvector matrix

$$
L^{-1}=\left(\begin{array}{cc}
1 & -Z \\
1 & Z
\end{array}\right)
$$

Here,

$$
Z=\frac{\rho \omega}{k_{z}}
$$

Then, for k_{z} real,

$$
e^{M \Delta z}=L e^{\wedge \Delta z} L^{-1}=\left(\begin{array}{cc}
\cos \left(k_{z} \Delta z\right) & Z i \sin \left(k_{z} \Delta z\right) \\
\frac{i}{Z} \sin \left(k_{z} \Delta z\right) & \cos \left(k_{z} \Delta z\right)
\end{array}\right)
$$

This is stable if k_{z} is real.
For k_{z} imaginary, $k_{z}=i\left|k_{z}\right|$, we remove the unstable mode by a projection operator (Maji and Kouri, 2011; Sandberg and Beylkin, 2009), and we use

$$
e^{M \Delta z}=L\left(\begin{array}{cc}
0 & 0 \\
0 & e^{-\left|k_{z}\right| \Delta z}
\end{array}\right) L^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & Z \\
\frac{1}{Z} & 1
\end{array}\right) e^{-\left|k_{z}\right| \Delta z}
$$

where now

$$
Z=\frac{\rho \omega}{i\left|k_{z}\right|}
$$

For seismic modeling we may start with a point source where the downgoing wavefield is

$$
D_{0}^{\prime}=\frac{-2 \pi S(\omega)}{i k_{z}} e^{-i\left(k_{x} x_{s}+k_{y} y_{s}\right)}
$$

Here the $S(\omega)$ is the source signature and $\left(x_{s}, y_{s}\right)$ is the source position.
For seismic imaging we follow Arntsen et al. (2012) and start with

$$
D_{0}=\frac{1}{\left(D_{0}^{\prime}\right)^{*}}=\frac{i k_{z}}{2 \pi S(\omega)^{*}} e^{i\left(k_{x} x_{s}+k_{y} y_{s}\right)}
$$

where $*$ denotes complex conjugate.
In both cases the initial values of the modeling equations are

$$
\binom{P}{V_{z}}_{0}=L\binom{D_{0}}{0}=\binom{D_{0}}{\frac{-k_{z}}{\rho \omega} D_{0}}
$$

Next, we start with the recorded data P_{0} and $V_{z 0}$ which we downward continue to get P_{d} and $V_{z d}$.

At a certain depth level we compute the upgoing wavefield from the data

$$
U_{d}=\frac{1}{2}\left(P_{d}-Z V_{z d}\right)
$$

and the downgoing wavefield from the source

$$
U_{s}=\frac{1}{2}\left(P_{s}+Z V_{z s}\right)
$$

A common-image gather for a single shot is

$$
R(\mathbf{p}, \mathbf{x}, z)=\iint U_{d}\left(\omega, \mathbf{x}+\frac{\mathbf{h}}{2}, z\right) D_{s}^{*}\left(\omega, \mathbf{x}-\frac{\mathbf{h}}{2}, z\right) e^{-i \omega \mathbf{p} \cdot \mathbf{h}} d \mathbf{h} d \omega
$$

where $\mathbf{h}=\left(h_{x}, h_{y}, 0\right)$ is the horizontal offset coordinate and p. $\mathbf{h}=p_{x} h_{x}+p_{y} h_{y}$.

- We are proposing a two-way propagation method for P and V_{z} wavefields (Generalized phase shift method).
- Elimination of unstable evanescent component using a an eigen decomposition.
- This method is very promise and more work is needed.

Acknowledgments

- ROSE Project
- CPGG/UFBA and INCT-GP/CNPq.

