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The Elastic Wave Equation

Wave equation for the particle displacement
([Aki and Richards, 2002])

ρ(x)üi(x, t) = ∂jτij(x, t) + fi(x, t) (1)

τij(x, t) = cijkl(x) ∂luk(x, t)− Iij(x, t) (2)

ρ: density, u: particle displacement, τij : stress tensor, f : body
force, cijkl: stiffness tensor, Iij : volume force.
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Wave equation for the stress tensor

spqij(x)τ̈ij(x, t) =
1

2
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∂q
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1
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)
+ ∂p

(
1

ρ(x)
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)]

+
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[
∂q
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+ ∂p

(
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)]
+ Q̈ij(x, t), (3)

eqp(x, t) = spqij(x)τij(x, t)−Qpq(x, t) (4)

spqij : compliance tensor, eqp: strain, Qpq(x, t) = spqij(x)Iij(x, t):
volume source.
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Modeling

• Full three dimensional elastic modeling.

• Staggered finite difference method described by Virieux
([Virieux, 1986]).

• Perfectly Matched Layer (PML) ([Zhen et al., 2009]) used
as Absorbing Boundary Conditions (ABCs).

• Free surface modeled using approach by Mittet
([Mittet, 2002]).

• Problems: Large memory requirements, computer time,
parallellization, etc.
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The Misfit Functionals

General definition
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)
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∫
T

∫
Ωr

W
(
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)
dS dt, (5)

Three cases investigated further;
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)
=

∫
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|d− f(m)| dS dt, (6)
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∫
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(
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)
dS dt. (8)

Ωr: receiver surface, T : time interval, d: measured field, f(m):
modeled field.



Introduction The Misfit Functionals Conclusions

Gradients

General formulation

∇mΨ =

∫
T

∂W
(
d, f(m)

)
∂f(m)

∂f(m)

∂m
dt (9)

See [Fichtner, 2011].

• Dependent on how the problem is parametrized; i.e. Lamé
parameters, velocities, etc.

• Problem: Due to computer power “impossible” to find the
Fréchet kernel.

• Solution: Tarantola ([Tarantola, 1984]) forward/backward
wave field formulation.
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The general forward/backward gradients:

∇ρΨ = −
∫
T

∫
Ω
u̇p(t)

[
Γ̇0
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[
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where

Λ = − λ

2µ(3λ+ 2µ)
and M =

1

4µ
. (13)

Conversion between parameters is done by using differential
calculus.
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Principle formulas for gradients

∇ρΨ = Cρ

∫
T

(−→vz +−→vx +−→vy) (←−vz +←−vx +←−vy) dt, (14)

∇vpΨ = Cvp

∫
T

(−→τzz +−→τxx +−→τyy) (←−τzz +←−τxx +←−τyy) dt, (15)

∇vsΨ = Cvs

∫
T

(−→τzx +−→τyx +−→τzy) (←−τzx +←−τyx +←−τzy) dt. (16)

v: particle velocity, τij : stress tensor, Ci: constant dependent
on parameter under consideration.



Introduction The Misfit Functionals Conclusions

Numerical Results

Receiver layer

Perturbation layer

Bottom layer

• 500 meters grid in each direction; sampling 5 meters.

• Four source-receiver geometries: one-shot-many-receivers
geometries.
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Source-receiver geometries

G1: The receivers are placed in the whole receiver
layer, and the source is in the middle of this layer.

G2: The receivers are placed in a square which is one
quarter of the full layer. The source is placed in
the middle of the full layer, i.e. on the corner of
the square.

G3: The receivers consist of eight streamers that are
separed by 50 meters. The streamers are placed in
the middle of the receiver layer. The source is
placed in front of the middle streamers.

G4: The receivers consist of a single streamer, which is
placed in the middle of the receiver layer. The
source is in front of the streamer.
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Perturbation layer

(a) (b) (c)

(a): model 1, (b): model 2, (c): model 3.
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Resolution matrix
In matrix notation

∆v̂p = c∇vpΨ(d, f(m)) = cJTJ∆vp, (17)

∆v̂p = cR∆vp, (18)

R = JTJ: resolution matrix, c: gradient constant.

R∆vp =



R11 R12 . . . R1n

R21 R22 . . . R2n
...

...
...

...
...

. . .
...

...
...

...
R(m−1)1 R(m−1)2 . . . R(m−1)n

Rm1 Rm2 . . . Rmn





0
0
...

∆vp,k
...
0
0


(19)
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L2 gradient images: Model 1

Geometry 1; top: Horizontal slice at 250 m depth, bottom:
vertical slice at 250 m offset.
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L2 gradient images: Model 1

Geometry 2; top: Horizontal slice at 250 m depth, bottom:
vertical slice at 250 m offset.
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L2 gradient images: Model 1

Geometry 3; top: Horizontal slice at 250 m depth, bottom:
vertical slice at 250 m offset.
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L2 gradient images: Model 1

Geometry 4; top: Horizontal slice at 250 m depth, bottom:
vertical slice at 250 m offset.
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L1 gradient images: Model 1

Geometry 1; top: Horizontal slice at 250 m depth, bottom:
vertical slice at 250 m offset.
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Gradient images: Model 2

Geometry 1, horizontal slices at 250 m depth; top: L2-norm,
bottom: L1-norm.
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Gradient images: Model 3

L2-norm, horizontal slices at 250 m depth; top: Geometry 1,
bottom: Geometry 3.
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Summary

• The source-receiver geometry has major impact on the
gradient.

• Denser receiver grid gives more focusing of the gradient.

• Many receivers compared to few receivers give better
focusing. Conclusion: Use as many receivers as possible
and put the source in the middle of the receiver grid.

• Coupled gradients.

• Different numerical artifacts for the gradients: L1 seems to
be the worst.

• The Cauchy and L2 gradients have the same properties.
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