NTNU - Trondheim Norwegian University of Science and Technology

3D inversion of electromagnetic data

Lutz Mütschard, Torgeir Wiik, Ketil Hokstad, and Bjørn Ursin
Supervisors: Ketil Hokstad and Bjørn Ursin
ROSE meeting April 2012 in Trondheim

Content

- Motivation
- Survey area
- Receiver orientation analysis
- new method + example
- Joint CSEM and Magnetotelluric inversion
- Theory
- Real data example

Survey Area

Motivation

- Weak primaries, strong multiples, and diffraction caused by the salt
- Limited seismic imaging quality near the salt structures
- Alternative methods CSEM, MT, gravity, and magnetics

Receiver orientation analysis

Orientation of instruments at the seabed is arbitrary and is defined by three angles:

- Azimuth (z-axis, Θ angle)
- Pitch
- Tilt (y-axis, α angle) (x-axis, β angle)

Receiver orientation analysis

- Assume source of the natural EM field to be a plane wave field and utilize 3 components of the magnetic field to estimate the receiver orientation on seabed

1. Tilt and Pitch angle

$$
\min _{\alpha_{k} \beta_{k}} \sum_{t_{0}}^{t_{n}}\left|H_{z}^{r e f}(t)-\bar{H}_{z}^{k}(t)\right|
$$

2. Separate 1D downgoing field

$$
\begin{aligned}
& H_{x}^{(D)}=H_{x}-\left[\frac{1}{2}\left(H_{x}+\tilde{c} \tilde{\varepsilon} E_{y}\right)\right] \quad \tilde{c} \tilde{\varepsilon}=\sqrt{\frac{i \sigma}{\mu_{0} \omega}} \\
& H_{y}^{(D)}=H_{y}-\left[\frac{1}{2}\left(H_{y}-\tilde{c} \tilde{\varepsilon} E_{x}\right)\right] \quad \text { (Amundsen et al. 2006) }
\end{aligned}
$$

3. Azimuth angle

$$
\min _{\theta_{x}^{k}, \sigma_{\text {sea floor }}} \sum_{t_{0}}^{t_{n}}\left|\left\{\left|H_{x}^{D, r e f}(t)-\hat{H}_{x}^{D, k}(t)\right|-\left|H_{y}^{D, \text { ref }}(t)-\hat{H}_{y}^{D, k}(t)\right|\right\}\right|^{2}
$$

Receiver orientation analysis

www.ntnu.edu

Joint inversion of CSEM and MT data

CSEM

Maqnetotellurics

Active method, periodically alternating electric dipole
$0.1 \mathrm{~Hz}-20 \mathrm{~Hz}$

Skin depth 5 km in marine environm.

High resolution, number of source positions

Sensitive to resistors in a conductive background

Vertical + horizontal resistivity

Passive metbod, natural occuring plane wave EM source field
$0.001 \mathrm{~Hz}-10 \mathrm{~Hz}$

Skin depth up to 50 km

Low resolution, receiver spacing

Sensitive to conductors in a resistive background

Horizontal resistivity

Joint inversion of CSEM and MT data

3D Contrast source inversion of the scattered electric field

Model devided into a background B and anomalous D region

$$
e_{i}(\mathbf{x})=e_{i}^{\mathrm{inc}}(\mathbf{x})+\int_{\mathcal{D}} G_{i j}^{E}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \sigma_{0, v}\left(\mathbf{x}^{\prime}\right) \chi_{j j}\left(\mathbf{x}^{\prime}\right) e_{j}\left(\mathbf{x}^{\prime}\right) \mathrm{d} \mathbf{x}^{\prime}, \quad \mathbf{x} \in \mathcal{D}
$$

Total field $=$ background field + scattered field (Lippmann - Schwinger equation)

$$
\chi \text { is the contrast } \mathcal{W}=\chi e \text { is the contrast source }
$$

Joint inversion of CSEM and MT data

Definition of:

1) Contrast sources

$$
\begin{aligned}
\mathcal{W}_{\mathrm{CSEM}} & =\left\{\mathbf{w}_{\mathrm{CSEM}}^{j, k}\right\}_{j=1 \ldots N_{s}}^{k=1 \ldots N_{\text {CSEM }}}=\left\{\chi \mathrm{e}_{\mathrm{CSEM}}^{j, k}\right\}_{j=1 \ldots N_{s}}^{k=1 \ldots N_{\text {CSEM }}} \\
\mathcal{W}_{\mathrm{MT}} & =\left\{\mathbf{w}_{\mathrm{MT}}^{k}\right\}^{k=1 \ldots N_{f_{\mathrm{MT}}}}=\left\{\chi \mathbf{e}_{\mathrm{MT}}^{k}\right\}^{k=1 \ldots N_{f_{\mathrm{MT}}}}
\end{aligned}
$$

2) Data operators

$$
\begin{aligned}
\mathbf{e} & =\mathbf{e}^{\mathrm{inc}}+G^{E, \mathcal{D}} \mathbf{w} \\
\mathbf{f}^{E} & =G^{E, \mathcal{S}} \mathbf{w}
\end{aligned}
$$

Joint inversion of CSEM and MT data

Objective function:

$$
\begin{aligned}
& F_{1}\left(\mathcal{W}_{\text {CSEM }}, \mathcal{W}_{\text {MT }}, \chi\right)=\alpha_{1, \text { CSEM }}^{E} \sum_{k=1}^{N_{\text {CSEM }}} \sum_{j=1}^{N_{s}}\| \|_{\text {CSEM }}^{E_{j, k}}\left(\mathrm{f}_{\text {CSEM }}^{E, j, k}-G^{E, S, k} \mathbf{w}_{\text {CSEM }}^{j, k}\right) \|_{s}^{2} \text { CSEM }
\end{aligned}
$$

$$
\begin{aligned}
& +\alpha_{1, M T}^{E} \sum_{k=1}^{N_{\text {SMT }}}\left\|\Xi_{M T}^{E, k}\left(f_{M T}^{E, k}-G^{E, S, k} \mathbf{w}_{\mathrm{MTT}}^{k}\right)\right\|_{S}^{2} \quad \text { MT data fidelity } \\
& +\alpha_{2, M T} \sum_{k=1}^{N_{\text {frr }}}\left\|\chi_{M T T}^{\text {inc. } k}-\mathbf{w}_{M T}^{k}+\chi G^{E, D, k, w_{M M T}^{k}}\right\|_{\mathcal{D}}^{2} \quad \text { Sippmann- } \\
& \text { + regularization }
\end{aligned}
$$

(Wiik, to be subm. to Geophys. Prospecting 2012)

Joint inversion of CSEM and MT data

```
Input: Initial contrast and contrast sources
foreach iteration do
    foreach CSEM frequency do
    foreach source do
    Minimize equation }\mp@subsup{F}{1}{}\mathrm{ with respect to w
    end
    end
    foreach MT frequency do
    | Minimize equation }\mp@subsup{F}{1}{}\mathrm{ with respect to ww
    end
    Minimize equation }\mp@subsup{F}{1}{}\mathrm{ with respect to }
    if stop criterion is true then
    stop iterations
else
    proceed to next iteration
end
```


Joint inversion of CSEM and MT data

Initial model for MT and CSEM inversion

Joint inversion of CSEM and MT data

Magnetotelluric data only

Joint inversion of CSEM and MT data

Joint inversion of CSEM and MT data

Acknowledgements

-NFR for financial support to the ROSE project -Statoil and their partner GDF SUEZ E\&P Norge for providing data from the Nordkapp basin survey
-My coworker Torgeir Wiik, Ketil Hokstad and Bjørn Ursin for their supervision

Forskningsrådet

Statoil

Literature

L. Amundsen, L. Løseth, R. Mittet, S. Ellingsrud and B. Ursin, 2006, Decomposition of electromagnetic fields into upgoing and downgoing components: Geophysics 71
K. Key and J. Lockwood, 2010, Determining the orientation of marine CSEM receivers using orthogonal Procrustes roation analysis: Geophysics 75
R. Mittet, O. M. Aakervik, H. R. Jensen, S. Ellingsrud and A. Stovas, 2007, On the orientation and absolute phase of marine CSEM receivers: Geophysics 72
L. Mütschard, K. Hokstad and B. Ursin, Estimation of seafloor electromagnetic receiver orientation: submitted to Geophysics
L. Mütschard, K. Hokstad and B. Ursin, Estimation of seafloor electromagnetic receiver orientation: EAGE 2012 Extended Abstracts
T. Wiik, L. Løseth, B. Ursin and K. Hokstad, 2011, TIV contrast source inversion of mCSEM data: Geophysics 76
T. Wiik, K. Hokstad, B. Ursin and Lutz Mütschard, Joint inversion of mCSEM and MT data: submitted to Geophysical Prospecting

$$
\begin{aligned}
& \mathbf{R}_{\mathbf{z}}=\left(\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \mathbf{R}_{\mathbf{y}}=\left(\begin{array}{ccc}
\cos (\alpha) & 0 & -\sin (\alpha) \\
0 & 1 & 0 \\
\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right) \\
& \mathbf{R}_{\mathbf{x}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\beta) & -\sin (\beta) \\
0 & \sin (\beta) & \cos (\beta)
\end{array}\right)
\end{aligned}
$$

$$
\left(\begin{array}{c}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right)^{\prime}=\mathbf{R}_{\mathbf{z}}(\theta) \mathbf{R}_{\mathbf{y}}(\alpha) \mathbf{R}_{\mathbf{x}}(\beta)\left(\begin{array}{c}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right)
$$

