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Problem statement

Calendar time interpolation

Interpolate between amplitude maps from different calendar times.
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Why interpolate in calendar time?

Main goals

• Estimates of amplitude maps inbetween surveys
• at Sleipner there have been multiple gravity surveys and one CSEM
survey performed at different times than the seismic surveys.

• Visualization purposes (movie, ‘‘cartoon’’)
• easy way to introduce the data set for a new audience
• makes it easier to get a feeling of the actual front speed
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Existing methods

• History matching tools (e.g., reservoir simulators).
• Requires a lot of computational time only to complete one forward
simulation. In many cases it is also hard to match the observed
seismic completely.

• Image morphing techniques (e.g., visual effects in movies)
• May require considerable user input in order to have a satisfactory
interpolation result.

• The level set method
• Difficult to define the normal front propagation speed. Usually used
for front evolution and not for interpolation.
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Outline of method

Two parts

The interpolation method is divided into two parts.

1 The contour is interpolated.

2 The amplitude values are interpolated based on the contour interp.
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Notation

• As input, there are S seismic data sets.
• The surveys have been taken at times T = {t1, t2, ..., tS}.
• From the data there are created S different shapes Si.
• The front of Si is written ∂Si.
• Normal front propagation speed is denoted by v(x, y, t).
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Main assumption

No ‘‘shape oscillations’’ during a given time interval [ti, ti+1].

In order to make the problem more tractable it is assumed that the front
∂S passes each point (x, y) at most once during each time interval

[ti, ti+1], i = 1, ..., (S− 1).

This assumption alone makes it possible to write

v(x, y, t) ≡


v(1)(x, y) for t ∈ [t1, t2),

v(2)(x, y) for t ∈ [t2, t3),
...

v(S−1)(x, y) for t ∈ [tS−1, tS].
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Traveltime calculation

Traveltime on a given path `

(∆t)` =

∫ Pi+1

Pi

d`
v(i)(x, y)

≤ ti+1 − ti ≡ t∗i .

If (∆t)` � t∗i then the final point is reached much faster than
‘‘necessary’’. Given the limited amount of information we have, a
reasonable approximation for the travel time is (∆t)` ≈ t∗i .
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Calculation of the paths `
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Calculation of the paths `

From the calculation of the paths we can construct a directed acyclic
graph (DAG). By traversing this graph it is possible to construct a
number of paths each starting out from ∂Si and ending on ∂Si+1. By
using the time estimates (∆t)` ≈ t∗i we can define the final solution

w = argmin
w

∣∣∣∣∣∣∣∣( P
λT

)
w−

(
t
0

)∣∣∣∣∣∣∣∣2 , (
wi ≡ v−1i

)
.
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Outline of amplitude interpolation part

Two parts

The amplitude interpolation is divided into two parts.

1 Define end point values.

2 Interpolate between end point values and known values from data.
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End point values
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Interpolation scheme
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Interpolation scheme

A (possibly) non-linear scheme.

Choosing a linear interpolation scheme will introduce large artifacts if
the amplitude evolution on average is highly non-linear. In order to take
into account any non-linearities we look at the average amplitude
among cells a distance f from the front,

µ(f) ≡ 1
S

∑
ti∈T

∫ ∞
0

a · p(a | f, ti) da.

From the result of the contour interpolation part it is straightforward to
calculate f = f(t) for the given cell, hence it is possible to scale the
composite function µ(f(t)) such that a(t) gets a similar time evolution
as µ(f(t)).
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Estimation of interpolation uncertainty

Number of ‘‘error checks’’

The interpolation uncertainty can be estimated by excluding data sets,
interpolate between the remaining data sets, and then compare the
excluded data sets with the interpolated values. It turns out to be

E(S) ≡
S−1∑
k=1

S∑
i=k+1

(i− k− 1) =
S(S− 1)(S− 2)

6

available ‘‘error checks’’ (S ≥ 2). For the Sleipner data set, E(7) = 35.
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Estimation of interpolation uncertainty
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