

Prestack traveltimes for DTI media

ROSE Meeting 2012, Trondheim, Norway

Pavel Golikov¹, Tariq Alkhalifah² and Alexey Stovas¹

¹NTNU, Trondheim, Norway ²KAUST, Thuwal, Saudi Arabia

April 23, 2012

Motivation

- DSR the double-square-root operator being used for migration before stacking
- DTI the special (but most practical) case for TTI media with symmetry axis being orthogonal to the dip

Outline

Double-square-root (DSR) equation

Anisotropic media with tilted symmetry axis

DSR equation for DTI

DTI traveltime parameters

Conclusions

 $\frac{(s_x-x)^2+(s_y-y)^2+z^2}{v_g^2(\phi)}$ $(r_x-x)^2+(r_y-y)^2+z^2$ + $v_q^2(\phi)$

t

 $\frac{(s_x-x)^2+(s_y-y)^2+z^2}{v_g^2(\phi)}$ t $(r_x - x)^2 + (r_y - y)^2 + z^2$ + $v_q^2(\phi)$

 $= \sqrt{\frac{(s_x - x)^2 + (s_y - y)^2 + z^2}{v_g^2(\phi)}}$ + $\sqrt{\frac{(r_x - x)^2 + (r_y - y)^2 + z^2}{v_g^2(\phi)}}$

$$\frac{\partial t}{\partial z} = \sqrt{\frac{1}{v^2(\theta)} - \left(\frac{\partial t}{\partial s}\right)^2} + \sqrt{\frac{1}{v^2(\theta)} - \left(\frac{\partial t}{\partial r}\right)^2}$$

$$q = \sqrt{1 - p_s^2 v^2(\theta)} + \sqrt{1 - p_r^2 v^2(\theta)}$$

Alkhalifah & Sava, 2010

 $\frac{(s_x - x)^2 + (s_y - y)^2 + z^2}{v_g^2(\phi)}$ $\frac{(r_x - x)^2 + (r_y - y)^2 + z^2}{v_g^2(\phi)}$ $\left(\frac{\partial t}{\partial s}\right)$ $\frac{\partial t}{\partial z}$ $\sqrt{\frac{1}{v^2(\theta)}}$ $\left(\frac{\partial t}{\partial r}\right)^2$ $\left| \frac{1}{v^2(\theta)} - \right|$ $q = \sqrt{1 - p_s^2 v^2(\theta)} + \sqrt{1 - p_r^2 v^2(\theta)}$

 $\frac{\partial U}{\partial z} = \frac{-i\omega q}{v} U$

Jon Claerbout, 1985, Imaging of the Earth Interior

s-r and x-h coordinate systems

$$x = \frac{s+r}{2}$$
$$h = \frac{s-r}{2}$$

s-r and x-h coordinate systems

$$x = \frac{s+r}{2}$$
$$h = \frac{s-r}{2}$$

$$p_x = p_s + p_r$$

 $p_h = p_s - p_r$

Isotropic DSR

Tilted TI media

- Symmetry axis for transversely-isotropic (TI) media can be not only vertical (VTI) or horizontal (HTI) but also tilted (TTI).
- One of the most reasonable approximations for TTI is the model with the symmetry axis being normal to the reflector plane - the DTI model.

Slowness surface rotation

Slowness surfaces for VTI and TTI (tilt is 30°) media.

VTI slowness surface in acoustic approximation

$$q'_{P}^{2} - \frac{1}{v_{0}^{2}} \frac{1 - (1 + 2\eta)(1 + 2\delta)p'^{2}v_{0}^{2}}{1 - 2\eta(1 + 2\delta)p'^{2}v_{0}^{2}} = 0$$

The rotation operator is defined as

$$\left(\begin{array}{c} p'\\ q'\end{array}\right) = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{array}\right) \left(\begin{array}{c} p\\ q\end{array}\right)$$

where

 v_0 is the symmetry-direction velocity, $\eta = (\varepsilon - \delta)/(1 + 2\delta)$ q and p are vertical and horizontal slowness, respectively

TTI slowness surface

$$v_0^2(q\cos\theta + p\sin\theta)^2(1 - 2\eta(p\cos\theta - q\sin\theta)^2v_n^2) + (1 + 2\eta)(p\cos\theta - q\sin\theta)^2v_n^2 - 1 = 0.$$

TTI slowness surface

DTI slowness surface

$$\begin{cases} f_1(q_s, q_r, p_s, p_r, v_0, \delta, \eta) = 0\\ f_2(q_s, q_r, p_s, p_r, v_0, \delta, \eta) = 0 \end{cases}$$

where f_1 and f_2 are 8th-order polynomial.

11

DTI slowness surface

$$\begin{cases} f_1(q_s, q_r, p_s, p_r, v_0, \delta, \eta) = 0\\ f_2(q_s, q_r, p_s, p_r, v_0, \delta, \eta) = 0 \end{cases}$$

where f_1 and f_2 are 8th-order polynomial.

Solution can be found:

- Numerically using least-squares minimization
- Analytically using perturbation theory

DTI slowness surface

Exact DSR surface for DTI as a numerical solution for the model with $v_0 = 2 \text{ km/s}$, $\eta = 0.2$, $\delta = 0.1$.

12

Perturbation in an elliptical parameter η

Assuming η is a small parameter

$$\begin{cases} q_{s} = q_{s0} + q_{s1}\eta + q_{s2}\eta^{2} \\ q_{r} = q_{r0} + q_{r1}\eta + q_{r2}\eta^{2} \end{cases}$$

Perturbation in an elliptical parameter η

Assuming η is a small parameter

$$\begin{cases} q_{\rm s} = q_{\rm s0} + q_{\rm s1}\eta + q_{\rm s2}\eta^2 \\ q_{\rm r} = q_{\rm r0} + q_{\rm r1}\eta + q_{\rm r2}\eta^2 \end{cases}$$

$$q_{s0} = \frac{1}{v_0} \sqrt{\frac{1 - (1 + 2\delta)(p_h - p_x)^2 v_0^2 + 2\delta A^2}{(1 + 2\delta)}},$$
$$q_{r0} = \frac{1}{v_0} \sqrt{\frac{1 - (1 + 2\delta)(p_h + p_x)^2 v_0^2 + 2\delta A^2}{(1 + 2\delta)}},$$
$$A = \frac{1}{2} \left[\sqrt{(1 - p_x v_0)^2 - (1 + 2\delta)p_h^2 v_0^2} + \sqrt{(1 + p_x v_0)^2 - (1 + 2\delta)p_h^2 v_0^2} \right]$$

Shanks transformation

 $egin{aligned} & A_0 = q_{s0} + q_{r0} \ & A_1 = A_0 + (q_{s1} + q_{r1})\eta \ & A_2 = A_1 + (q_{s2} + q_{r2})\eta^2 \end{aligned}$

Shanks transformation

$$egin{aligned} & A_0 = q_{s0} + q_{r0} \ & A_1 = A_0 + (q_{s1} + q_{r1})\eta \ & A_2 = A_1 + (q_{s2} + q_{r2})\eta^2 \end{aligned}$$

$$q_{\rm Sh} = \frac{A_0 A_2 - A_1^2}{A_0 + A_2 - 2A_1}$$

Bender and Orszag, 1978

Accuracy test

www.ntnu.no

Traveltime parameters

Recorded data

Traveltime parameters

Recorded data

Taylor expansion for traveltime:

$$t^2(x) \approx t_0^2 + rac{x^2}{v_n^2} + rac{(1-S_2)x^4}{4v_n^4 t_0^2}$$

Golikov, Alkhalifah & Stovas, DSR for DTI

DTI traveltime parameters

 $q = q_0 + q_1 p_h + q_2 p_h^2 + q_3 p_h^3 + q_4 p_h^4$

DTI traveltime parameters

$$q = q_0 + q_1 p_h + q_2 p_h^2 + q_3 p_h^3 + q_4 p_h^4$$

$$t_0 = zq_0$$

 $v_n^2 = -2q_2/q_0$
 $S_2 = -2q_0q_4/q_2^2$

DTI traveltime parameters

$$q = q_0 + q_1 p_h + q_2 p_h^2 + q_3 p_h^3 + q_4 p_h^4$$

$$v_n^2 = \frac{v_0^2(1+2\delta)}{(1-p_x^2v_0^2)^2}$$
$$S_2 = 1 + 4p_x^2v_0^2 + 8\eta(1-p_x^2v_0^2)$$

18

Traveltime parameters for isotropic (blue), VTI (green) and DTI (red) models with parameters $v_0 = 2 \text{ km/s}$, $\eta = 0.2$, $\delta = 0.1$ and z = 1 km.

Inversion of traveltime parameters

Assuming z and p_x are known

$$t_0 = \frac{2z}{v_0} \sqrt{1 - p_x^2 v_0^2}$$
$$v_n^2 = \frac{v_0^2 (1 + 2\delta)}{(1 - p_x^2 v_0^2)^2}$$
$$S_2 = 1 + 4p_x^2 v_0^2 + 8\eta (1 - p_x^2 v_0^2)$$

Inversion of traveltime parameters

Assuming *z* and p_x are known

$$t_0 = \frac{2z}{v_0} \sqrt{1 - p_x^2 v_0^2}$$
$$v_n^2 = \frac{v_0^2 (1 + 2\delta)}{(1 - p_x^2 v_0^2)^2} \longrightarrow$$
$$S_2 = 1 + 4p_x^2 v_0^2 + 8\eta (1 - p_x^2 v_0^2)$$

$$v_0 = \frac{2z}{\sqrt{t_0^2 + 4z^2 p_x^2}}$$
$$\delta = \frac{v_n^2 (1 - p_x^2 v_0^2)^2}{2v_0^2} - 1$$
$$\eta = \frac{S_2 - 1 - 4p_x^2 v_0^2}{8(1 - p_x^2 v_0^2)}$$

20

Impulse response

- 5 pulses at zero-offset and vertical time 0.6, 1.2, 1.8, 2.4, 3 s.
- Model: v(z) = 1.5 + 0.6z, $\delta = 0$ and $\eta = 0.2$

Conclusions

DSR equation for DTI media derived by perturbation in anelliptic parameter η

22

Conclusions

- DSR equation for DTI media derived by perturbation in an elliptic parameter η
- Proposed approximation gives high accuracy for wide range of offsets and dips

Conclusions

- DSR equation for DTI media derived by perturbation in an elliptic parameter η
- Proposed approximation gives high accuracy for wide range of offsets and dips
- Traveltime parameters for DTI media are given by simple formulas that can be used for inversion

Acknowledgments

We would like to acknowledge the ROSE project and KAUST.

23

Thank you!