# Anisotropy

ROSE Rock Physics and Geomechanics Course 2012

Erling Tjær



2012.05.24

## Waves in a fractured rock

Many theories available (starting from Eshelby, 1957).

Very few well defined experiments.

Our approach:

Synthetic sandstones with controlled crack geometry





The technique has enabled resolution of theoretical discrepancies

## Impact of saturation on fracture induced anisotropy



Hudson (1980): No normal compliance in thin, saturated cracks  $\Rightarrow$  saturation nearly eliminates anisotropy

Thomsen (1995): Pore pressure equalization between cracks and pores

 $\Rightarrow$  anisotropy prevails also in saturated rocks

Rathore et al. (1995)





The technique has confirmed the validity of common, unproved assumptions

## Impact of fracture shape on fracture induced anisotropy

Budiansky & O'Connell (1976): "All fractures of convex shape produce almost the same signature on acoustic velocities"

The non-circularity of cracks should induce a shear wave splitting, however – the effect is very small.



Skjærstein et al. (1996)



The technique has allowed for studies of areas poorly described by theory

How can fracture size be determined from acoustic measurements?



 $\bigcirc$  NTNU

5

SINTEF

Fjær & Suaréz-Rivera (1998)



#### Cracks $\leftrightarrow$ low-pass filter







Stress-induced anisotropy: reset by cementation



Holt et al. (2005)



#### References:

Eshelby, J.D. (1957) "The determination of the elastic field of an ellipsoidal inclusion, and related problems". Proc Roy. Soc. London Ser. **A 241**, 376-396.

Budiansky, B. and O'Connell, R.J. (1976) "Elastic moduli of a cracked solid". Int. J. Solids Structures, **12**, 81-97.

Hudson, J.A. (1980) "Overall properties of a cracked solid!. Math. Proc. Camb. Phil. Soc. 88, 371-384.

Thomsen, L. (1995) "Elastic anisotropy due to aligned cracks in porous rock". Geophys. Pros. 43, 805-829.

Rathore, J.S., Fjær, E., Holt, R.M., Renlie, L. (1995) "Acoustic anisotropy of a synthetic sandstone with controlled crack geometry". Geophys. Pros. **43**, 711-728.

Skjærstein, A., Fjær, E., Rathore, J. S. (1996) "Acoustic anisotropy of rocks with non-circular cracks". 56<sup>th</sup> EAGE Conference & Technical Exhibition, Glasgow, PO21.

Fjær, E., Suaréz-Rivera, R. (1998) "Fracture size determined from amplitude data", EAGE'98, Leipzig, 8-12 June 1998, 10-30.

Skjærstein, A., Fjær, E., (2000) "Angular dependent attenuation in a sandstone with parallel cracks" In ADVANCES IN ANISOTROPY: SELECTED THEORY, MODELING, AND CASE STUDIES. Ed. J. Hood, Society of Exploration Geophysicists, Tulsa, 205-215.

Holt, R. M., Nes O. M., Fjær, E. (2005) "In-situ stress dependence of wave velocities in reservoir and overburden rocks". The Leading Edge, 24, 12, p. 1268-1274.

