Seismic Velocity Dispersion and Attenuation

Andreas Bauer

SINTEF Petroleum Research, Trondheim

- Introduction
- Dispersion/attenuation mechanisms
- How to measure dispersion/attenuation
- Conclusions and outlook

- Intrinsic attenuation in the subsurface is primarily due to rock-fluid interaction (viscous flow within the rock matrix)
- Intrinsic attenuation depends on permeability
- "Holy grail": Permeability from seismic Problem: - How to differentiate between scattering and local-flow induced attenuation
 - Several intrinsic attenuation mechanisms

Relation between attenuation and velocity dispersion (v = v(f))

Seismic wave
$$A_0 e^{-ikx} e^{-\alpha x} e^{-i\omega t}$$
 with $\omega = 2\pi f$
 $e^{i(k+i\alpha)x}$ complex wavenumber with real and imaginary part f : frequency

Phase velocity
$$v = \frac{\omega}{k}$$
 (real part)k: wavenumber
 α : attenuation coefficientAttenuation $\alpha = \frac{\omega}{2v} Q^{-1}$ (imaginary part)Q: Quality factor

 $k, v, \alpha, Q\,$ are functions of frequency

Frequency dependencies of real and imaginary parts of a response function of a physical system (v and Q in our case) are related by the

Kramers-Kronig relation: $\chi_2(\omega) = -\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{\chi_1(\omega')}{\omega' - \omega} d\omega', \quad \chi_1(\omega) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{\chi_2(\omega')}{\omega' - \omega} d\omega'$

3700

Velocity dispersion and attenuation in rocks

General features:

- Velocity increases with frequency
- Velocity increases around characteristic frequencies, f_c
- Attenuation, 1/Q, is highest at f_c

NTNU

Easy example: Dynamic stiffness of a rock

Sinusoidal loading of sample

Equivalent description (visco-elastic model)

SINTEF

(A) Low-frequency limit

- Fluid flows in and out of sample
- Pore pressure is constant
- Rock stiffness is given by matrix stiffness (drained stiffness),

 $M = M_{dry} = \frac{1}{C_1 + C_2}$

No energy dissipation (1/Q = 0)

(B) High-frequency limit

- Excitation too fast for drainage ⇒ no flow
- Pressure build-up in pore fluid during loading
- Enhanced rock stiffness, $M = \frac{1}{C_1}$
- No energy dissipation (1/Q = 0)

Dissipated energy is given by: $\int F \, dx = \int F \frac{dx}{dt} \, dt = \int F \, \dot{x} \, dt$

(C) Intermediate frequencies

- Force and displacement not in phase (phase shift δ)
 ⇒ finite energy dissipation (1/Q > 0)
- Maximum attenuation at $f = f_c = \frac{1}{\tau_c}$ with τ_c the characteristic drainage time

Log (frequency / Hz)

Measurement with water-saturated sandstone

Relationship between acoustic wave velocities and rock properties

Acoustic p and s-wave velocities depend on rock stiffness and density

$$V_{p} = \sqrt{\frac{M}{\rho}} = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$$
$$V_{s} = \sqrt{\frac{\mu}{\rho}}$$

M: p-wave modulusK: bulk modulusμ: Shear modulusρ: Density

Where is it important to consider seismic dispersion and attenuation?

 \Rightarrow Velocity models based on laboratory measurements with core material at ultrasonic frequencies

ROSE 2012 – Geomechanics Course - Dispersion

effects (at least for sandstones)

Where is it important to consider seismic dispersion and attenuation?

Reservoir surveillance, time-lapse seismic

Stress, temperature, and saturation can have significant impact on velocity dispersion, which needs to be accounted for in **rock-physics models** for quantitative interpretation of seismic data (inversion for temperature, pressure and stauration changes)

Areas of application

- Thermal EOR
- CCS

• "Biot" flow Biot (1956) $f_c \approx \frac{\phi}{\rho} \frac{H}{K_f} \cdot \frac{\eta}{k}$ Transition between viscous and inertial flow in pore space

- Relatively small effect in most cases (~ 2%)
- Characteristic frequencies usually in the ultrasonic range

Dispersion/Attenuation Mechanisms

Dispersion/Attenuation Mechanisms

Double porosity

Pride and Berryman (2003)

Patchy saturation

White (1975), Johnson (2001)

Both models are conceptually similar

 $f_c \approx \frac{K_f}{\phi \ L^2} \cdot \frac{\eta}{k}$

Inclusions of different porosity (i.e. stiffness) or fluid saturation (e.g. compressible gas bubbles), with $L \ll$ wavelength of seismic wave

⇒ local flow on meso scale

SINTEF ONTNU

Dispersion/Attenuation Mechanisms

Unified double-porosity model

Pride, Berryman, Harris (2004)

Characteristic frequency can vary over several orders of magnitude, including the seismic range

Several other mechanisms, including:

- Grain-to-grain movement (important at teleseismic frequencies) Jackson and Paterson (1986)
- Visco-elasticity of pore fluids (e.g. heavy oil or kerogen)
 Das and Batzle (2008); Kato, Onozuka, Nakayama (2008)
- Viscous shear relaxation (typically at ultrasonic frequencies)
 O'Connell and Budiansky (1977); Vo-Thanh (1990)
- Fractures (related to double-porosity model)
 Maultzsch, Chapman, Liu, Li (2003)
- Rheology of bound water in shales (not understood yet)

O NTNU

Measuring seismic dispersion/attenuation

Direct measurements

Only field measurements possible because of large wavelength at seismic frequencies

Figure 3. Attenuation and dispersion predicted by the double-porosity model of *Pride and Berryman* [2003a] (the solid curves) as compared to the data of *Sams et al.* [1997] (rectangular boxes). The number of Q^{-1} estimates determined by *Sams et al.* [1997] falling within each rectangular box are 40 VSP, 69 cross-well, 854 sonic log, and 46 ultrasonic core measurements. A similar number of velocity measurements were made. These various measurements come from different depth ranges at their test site.

from Pride, Berryman, Harris (2004)

Indirect measurements

Determine velocities from dynamic rock stiffness

$$V_{p} = \sqrt{\frac{M}{\rho}} \quad \text{with} \quad M(f) = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$$
$$V_{s} = \sqrt{\frac{\mu}{\rho}} \quad \text{with} \quad \mu(f) = \frac{E}{2+2\nu}$$

ONTNU

Small strain amplitudes (< 10⁻⁶) are required Reservoir Laboratory plastic (failure) STRAIN AMPLITUDE AI/I 10-2 (irreversible) Compact. Rock Deform 104 "static" dynamic" (isothermal) (adiabatic) 10-6 Laboratory Thermal Seismics Logging elastic Ultrasonics Relaxation (reversible) 10^{-8} 10² 104 106 10-2 10^{0} FREQUENCY (Hz)

SINTEF

Indirect measurements

Techniques:

(A) Excitation of eigenfrequencies (resonances)

- Resonant-bar technique
- Differential Acoustical Resonance Spectroscopy (DARS)

(B) Ecitation of forced oscillations

- Torsional excitation
- Axial excitation

Seismic-frequency techniques – Resonator techniques

Split Hopkinson Resonant Bar (SHRB) Test

Nakagawa, Rev. Sci. Instr. (2011)

ONTNU

SINTEF

Seismic-frequency techniques – Resonator techniques

- Introduce small rock sample in a fluid (gas) filled resonator
- Measure perturbed resonance curve as a function of sample position
- Invert data for dynamic stiffness of rock (real and imaginary part)

Seismic-frequency techniques – Forced Oscillator Techniques

Torsional forced oscillation method Jackson and Paterson (1986)

SINTEF

Seismic-frequency techniques – Forced Oscillator Techniques

Spencer (1981)

 \bigcirc NTNU

Seismic-frequency techniques – Forced Oscillator Techniques

Batzle, Han, Hofmann (2006):

Use **strain gauges** to measure strains in axial and radial direction in a core plug and a reference sample (AI) both excited by a sinusoidal force in axial direction

ONTNU

Batzle, Han, Hofmann (2006)

Batzle, Han, Hofmann (2006)

$$f_c(T) \propto \frac{k}{\eta(T)}$$

Oil viscosity decreases with temperature (by several orders of magnitude) ⇒ f_c shifts to higher frequencies

Temperature dependence of dispersion/attenuation

Velocity dispersion in heavy-oil sands caused by micro cracks?

Locked sand: large contact areas

Double-porosity model

<u>Input parameters:</u> Radius of penny-shaped inclusion = 0.9 mm; aspect ratio = $3 \cdot 10^{-4}$; volume fraction of inclusions = 0.03%

Dispersion in Shales

- Indications (few studies only!) for strong dispersion in shales
- Dispersion mechanisms in shales not understood yet related to bound water?

Integration of different techniques:

- Seismic/VSP
- Sonic logs
- Ultrasonics
- Dynamic stiffness
- microindendation

Duranti, Ewy, Hofmann (2006)

Dispersion in Shales – Temperature dependence

Typical temperature dependence of ultrasonic velocities in shales (schematic)

Temperature changes in shale formations (e.g. caprock of heated reservoir) could be greatly overestimated by ignoring dispersion effects and their temperature dependence

Conclusion

- Several mechanisms for velocity dispersion and attenuation have been identified and theoretically described
- Importance for seismic is still under debate
- Few reliable experimental studies
- Detection of velocity dispersion/attenuation in seismic surveys has in principle huge potential (permeability from seismic, fracture sizes, etc.). However, there is no deployable tool yet.