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Borehole Stability Problems 

• Tight hole / Stuck pipe incidents 
– Responsible for 5-10% of drilling time 
– Most frequently occurring in shale 
– Often high pore pressure, and in presence of swelling clay 

minerals (e.g. smectite) 
– Often in deviated wells 

• Lost circulation / Mud losses 
– May lead to kick / blow-out 
– Caused by fluid lost into natural fractures or by new 

fractures generated 



Tight hole / Stuck pipe 

• Causes: 
– Mechanical borehole collapse (often by shear failure) 

• Increased hole size by brittle failure; stuck because of accumulated 
cavings (”sloughing shale”) 

• Reduced hole size by large (plastic) hole deformations (”gumbo 
shale”) 

– Inappropriate hole cleaning 
– Differential sticking (only in permeable zones with mud cake) 
– Difficult hole trajectory: Key-seat, dog-legs 

 



Tight hole / Stuck pipe 

• Consequences: 
– Lost time, reaming, side-track ∝ € (or $) 
– Problems in further well operations (logging, cementing; 

continued drilling) 

• Solutions: 
– Overall well design i.e. 

• Casing programme 
• Mud weight 
• Mud composition 
• Drill somewhere else.. 

• Note: The solution depends on the cause ⇒  Need for 
diagnostics 



Lost circulation / Mud losses 

• Consequences: 
– Dangerous situation, a major safety issue 

– Risk of life and equipment 

• Solutions: 
– Overall well design i.e. 

• Casing programme 

• Mud weight 

• Lost circulation material (LCM) 

 

 



Borehole Stress Analysis 
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Stresses at vertical impermeable borehole wall (based on linear elastic rock 
and isotropic horizontal stresses): 
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Borehole Stress Analysis 

Case b:   z rθσ σ σ> >



Borehole Failure Analysis 

• Borehole stresses + Mohr-Coulomb failure criterion                        
⇒ 

• Minimum permitted well pressure to prevent shear failure at 
borehole wall (hole collpase) 
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• Tensile failure at the borehole wall may occur at high well 
pressure (Hydraulic fracturing => mud losses): 

 
 

 

• Tensile failure may also occur at low well pressure   (in 
underbalance): 

Borehole Failure Analysis 

'
0Tθσ = −

,max 0 03frac
w h H fp p Tσ σ= − − +

⇒ 

'
0r Tσ = −

⇒ 
,

,min 0 0
rad tens
w fp p T= −

Gives 
sharp 
(blade-
shaped 
cavings
) 



The Mud Weight Window 

• Minimum mud weight 
– Hole collapse in shale (shear failure case a or b) 

– Radial tensile failure in shale 

– Pore pressure (in case underbalanced drilling is 
prohibited) 

• Maximum mud weight 
 σh (minimum horizontal stress) in case of pre-existing 

natural fractures 

Fracturing of borehole wall 

 



Boreholes in anisotropic stress 
fields 

• If hole axis is parallel to a principal stress, then we can use the 
borehole stresses for a vertical hole also for horizontal holes, 
but we need to rotate the coordinate system first. 

 

• In general: Holes are most stable towards shear failure 
initiation when drilled along a direction with low stress 
anisotropy and with low stress level in the plane perpendicular 
to it. 

 

• Deviated holes are usually less stable because of shear 
stresses at the borehole wall.  



Stability vs. Hole Angle 

From Bradley, 
1979: Impossible 
to pass 60˚? 



Well Design 

c: Collapse 

p: Pore pressure 

m: Mud weight 

h: Horizontal stress 

f:  Fracture 

v: Vertical stress 



Borehole Stability  

… so far elastic behaviour + brittle failure 
 
But: Note the following field observations: 
 

 Boreholes are often stronger than predicted by elastic+brittle theory 
 
 Hole collapse is often time-delayed (∼ days) with respect to drill-out 
  
 Oil-based mud gives better stability than water-based mud  
 
 Addition of salt (in particular K+) may improve stability 



Borehole Stability: Plasticity 

• Elastic-brittle: No load-bearing capacity after failure initiation 
 
• Elasto-plastic: Can still sustain load after failure initiation 

Stress-strain curves for 

    Elastic-brittle  
       Elasto-plastic   
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Borehole Stability: Plasticity 

• Plastic zone around a borehole 
– Leads to softened zone around the hole, but may serve as a 

support to rock behind 
 Borehole failure criterion can 
be specified by a critical amount 
of plastic strain, or by a critical 
extent of a plastic zone. 
 
 Using the elastic-brittle 
equations with an upscaled 
strength gives acceptable 
results… 



Borehole Stability:                               
Effect of intermediate principal stress 

• Mohr-Coulomb predicts same 
strength independent of σ2. 
– Lab experiments show that this may 

underestimate strength 

– There are failure criteria (Drucker-
Prager, Lade a.o.) that account for 
σ2. 

– Borehole stress state is true triaxial! 

Takahashi & 
Koide, 1989 



Time-delayed borehole failure: 
Consolidation 
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Time-delayed borehole failure: 
Cooling 

• The thermal stress contribution may be very 
significant! 

• Temperature equlibrates with surroundings over time, 
so improved stability is temporary. 

• The effect  on collapse pressure is: 
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Mud Support 

• Capillary support by non-wetting fluid (e.g. oil): 
 
 
  
 γ: surface tension; γoil-water = 50⋅10-3 N/m  
 r: pore size; rshale ∼ 10 nm  
  pc ~ 10 MPa 

 
• So: An overbalance of 10 MPa is required for oil to penetrate 

into an intact shale. Since there is always an impermeable 
membrane, the t=0 stability will prevail. 
 

• Oil-based muds are not pure oils (so chemical effects could play 
a role; cf. osmosis)! 
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Osmotic potential acts like an 
excess pore pressure: 

 

 

 

∆Π is reduced by membrane 
efficiency σ<1. 

Ionic transport & exchange affects 
shale properties. 
aw,df: chemical activity of water in drilling fluid 
aw,sh: chemical activity of pore water in shale 
aw=1 (fresh water)          aw<1 (salt water) 

Mud Chemistry: Osmosis 
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R:  molar gas constant = 8.31 J mol-1 K-1;                                     
Vw:  molar volume of water = 0.018 l / mol;                                 
T: absolute temperature in K (=273 + ˚C) 





Geophysics for Borehole Stability? 
Key parameters are: 
• Rock strength (C0 and β) 
• Rock stresses  
• Pore pressure 

What do we have? 
 
Correlations – based on lab data 
Controlled experiments, but needs 
corrections for stress, temperature, 
frequency etc.  



Well planning from seismics 



Small Sample Shale Testing 

• We have developed techniques to measure static mechanical behaviour 
and stress dependent velocities in shale samples from cm to mm size 

– Full size shale cores are rarely available 

– Tests on small samples are fast 
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Anisotropic P-wave velocities 
vs. stress, measured on sub-
mm shale samples ( drill 
cutting size!) 

Strength  & Stiffness 
from core scratch 

Strength & Elastic 
Anisotropy on cm size 
shale samples 



Shale puncher 

Temperature dependent strength of Pierre shale 

From Erik Hallberg, 
MSc Thesis 2011 
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