

GEOMECHANICS FOR GEOPHYSICISTS

Stress Dependence of Velocities

Rune M Holt

Trondheim, 25 April 2012

Stress effects on Wave velocities

Well, not always...

🕥 SINTEF 🛛 🖸 NTNU

Fundamentals of Stress Dependence

3 main sources of stress dependence:

- Change in porosity with stress (can be predicted by Biot's poroelastic theory)
- Existence of sharp (or Hertzian) grain contacts
- Presence or generation of cracks / fractures

Notice: In linear elasticity, framework moduli in the Biot theory are constant by definition - thus, except for small porosity changes, stress dependence of wave velocities requires a nonlinear stress – strain relationship!

If only linked to porosity change, velocity change will depend on mean net stress

Following Biot:

$$\frac{\Delta \varphi}{\varphi} = \left(\frac{\alpha}{\varphi} - 1\right) \frac{\Delta \overline{\sigma'}}{K_{fr}} \qquad \alpha = 1 - K_{fr}/K_s$$

In most cases, this leads to only small velocity changes

Overburden Shales: Porosity Dependent Stress Sensitivity

The data include both hydrostatic & trixial loading

Porosity appears to be a main factor controlling stress dependence of wave velocitites in shales –

BUT NOT THE ONLY ONE...

ONTNU

Normal force F_z creates a contact area between the two particles

- a: radius of undeformed spheres (a=R₁=R₂)
- b: radius of contact area between deformed spheres
- s: relative displacement of sphere centers

Assumption: Particles are macroscopically and microscopically smooth Note: Not limited to spheres

• Contact stress:

(Derivation inspired by deGennes, 1996)

$$\sigma_{z,contact} \propto \frac{F_z}{b^2} \propto M_s \frac{b}{a} \propto M_s \frac{s}{b}$$

$$\Rightarrow$$

$$F_z \propto M_s sb \propto M_s s^{\frac{3}{2}} a^{\frac{1}{2}} \propto M_s a^2 \left(\frac{s}{a}\right)^{\frac{3}{2}}$$

 M_s is an appropriate elastic modulus of the solid particle material

\Rightarrow Macroscopic stress:

$$\sigma_{z,macro} \propto \frac{F_z}{a^2} \propto M_s \varepsilon_{z,macro}^{\frac{3}{2}}$$
$$\frac{d\sigma_z}{d\varepsilon_z} \propto \sigma_z^{\frac{1}{3}}$$

A stress dependent elastic modulus! The Hertzian contact is a source of nonlinear elasticity

• The full equations (equal spheres):

 $E_s \& v_s$ are Young's modulus & Poisson's ratio of the solid

• The normal force coefficient

$$D_{n} = \frac{dF_{z}}{ds} = \left[\frac{3M_{s}^{2}F_{z}a}{4}\right]^{\frac{1}{3}} = \frac{E_{s}}{1-v_{s}^{2}}b = \frac{2G_{s}}{1-v_{s}}b$$

where G_s is the shear modulus of the solid particles.

Mindlins's approach: The influence of a shear force

 Applying a small tangential stress to a loaded grain contact gives a tangential force coefficient:

$$D_{t} = \frac{dF_{x}}{ds_{x}} = \frac{\left[6(1-v_{s}^{2})E_{s}^{2}F_{z}a\right]^{\frac{1}{3}}}{(2-v_{s})(1+v_{s})} = \frac{(1-v_{s})}{(2-v_{s})}\left[6M_{s}^{2}F_{z}a\right]^{\frac{1}{3}};$$
$$D_{t} = \frac{4G_{s}}{2-v_{s}}b$$

Mindlin (1948)

Analytical modelling of uncemented granular media

- Walton (1987) calculated the effective elastic moduli for a random dense packing of equally sized spheres (porosity \cong 0.36).
 - Assumptions: The granular assembly is in a pre-set strain state (isotropic or uniaxial strain) and the wave-induced stresses are small (Hertz-Mindlin contact law applies to all contacts).
 - No new contacts, no contacts lost during loading or unloading.
 - The incremental stiffnesses are computed by summation over all contacts between spheres.
 - Spheres may be
 - infinitely rough (no slip), or
 - infinitely smooth (perfect slip; i.e. zero friction)

Analytical modelling of uncemented granular media

• Walton's results for isotropic (hydrostactic) stress:

$$K = \frac{n(1-\varphi)}{6\pi a} D_n = \left(\frac{n^2(1-\varphi)^2 G_s^2}{18\pi^2(1-v_s)^2}\sigma\right)^{\frac{1}{3}}$$

$$G = \frac{n(1-\varphi)}{10\pi a} (D_n + \frac{3}{2}D_t) \rightarrow$$

$$G_{noslip} = \frac{5 - 4v_s}{5(2 - v_s)} \left(\frac{3n^2(1 - \varphi)^2 G_s^2}{2\pi^2(1 - v_s)^2} \sigma \right)^{\frac{1}{3}}$$

$$G_{nofriction} = \frac{1}{10} \left(\frac{12n^2(1-\varphi)^2 G_s^2}{\pi^2 (1-v_s)^2} \sigma \right)^{\frac{1}{3}}$$

Smooth

n: Coordination number (= average number of contacts per particle)

The "rough" limit is also known as the Hertz-Mindlin theory

Analytical modelling of uncemented granular media

- The coordination number:
 - 6 for simple cubic, 12 for hcp & fcc; ~ 9 for random dense pack.
 - Approximate porosity dependence:

$$n \approx 22(1-\varphi)^2$$

• The v_p/v_s ratio in a random grain pack:

Experimental data on glass beads – Comparison with Walton's Hertz-Midlin theory

Analytical Modelling: Hydrostatic Behaviour

□ Analytical model fits experimental curve well with coordination number n=6

Analytical Modelling: Wave Velocities

- □ Walton (Hertz-Mindlin) theory predicts velocities to increase with $\sigma^{1/6}$ and n $^{1/3}$ (n: coordination number)
- Experiments show velocities increase with $\sigma^{0.20-0.25}$
 - Transition from slip to non-slip?
 - Increasing effective coordination number with stress?
- Velocities in sands are often significantly lower than predicted by theory

From Holt et al., 2007

The effect of cementation

Classical approach: Digby (1981): Two spheres are bonded at an adhesive contact with radius b_0 . Outside the bonded area, a Hertzian approach is used.

In real cemented rocks, we may expect stress dependence

- If rock is soft, so many grain contacts are not cemented
- If there are pre-existing cracks / fractures

Pragmatic stress sensitivity...

Lab measured velocities vs. hydrostatic stress may often be fitted to an equation like:

$$\mathbf{v} = \mathbf{v}_0 (\boldsymbol{\sigma} + \boldsymbol{\sigma}_0)^m$$

- The parameter σ₀ ensures non-zero velocity at zero stress, and may be seen as a measure of the degree of rock cementation (~ tensile strength).

Stress-Induced Anisotropy

Overview: Sources of stress sensitivity

Table 1. Various sources	of in-situ stress sensitivity for	velocities in a depletir	ng reservoir	
Mechanism	Controlling factor	Wave velocity change	Effect on velocity anisotropy	Conditions
Porosity decrease	Increase of mean effective stress	个 (small effect)		Most efficient near critical porosity (suspen- sion threshold)
Grain contact compression	Increase of effective stresses	↑	↓	Requires uncemented grains
Closure of cracks/ fractures	Increase of effective stress	↑	↓	Fractured reservoir
Generation of cracks/fractures	Reservoir stress path (deviatoric versus normal effective stress)	↓ ↑		Rock brought beyond yield onset (primarily in decompression)/initially fractured rock
Decrease of pore fluid bulk modulus	Pore pressure reduction	↓ (small effect)	(small effect)	Above bubble point of fluid; constant amount of dissolved gas

From Holt et al., 2006 (TLE)

Role of the Stress Path

□ Wave velocities depend on stress – and on the stress path!

Synthetic Sandstone

- □ K=1: Hydrostatic stress increase
- \Box K=K₀: Uniaxial strain
- □ K=0: Uniaxial stress increase

$$\Delta \sigma_{\rm h} = K \Delta \sigma_{\rm v}$$

Effective Stress for Velocities

 Ultrasonic Lab data with North Sea overburden Field Shale: 40 % porosity; 35-50 % clay (smectite + kaolinite)

() SINTEF **()** NTNU

Effective Stress coefficients

Rock Type	ф %	Pc MPa	Рр MPa	n _p	n _s	α	Reference study
Chelmsford granite	0.5	-	0-10	0.5-0.8	-	-	Todd & Simmons (1972)
Australian SST	20.4 20.6 23.7 24.1	15-65	5-55	0.6-1.0 0.7-1.0 0.8-1.0 0.8-1.0	-	_	Siggins & Dewhurst (2003)
Berea SST drained	-	0.5 5 10 15 20 20 25 60 100	$ \begin{array}{c} 0 \\ \neq 0 \\ 0 \\ \neq 0 \\ \neq 0 \\ 0 \\ \neq 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.990 0.946 0.930 0.986 0.969 0.858 0.89 0.776 0.84 -	- 1.02 - 1.06 - 1.07 1.17		Christen sen & Wang (1985) Prasad & Manghani (1997) Christen sen & Wang (1985) Prasad & Manghani (1997) Prasad & Manghani (1997) Prasad & Manghani (1997) Christen sen & Wang (1985) Prasad & Manghani (1997) Christen sen & Wang (1985) Christen sen & Wang (1985)
Michigan SST		5 10 15 20 25	≠0	0.977 0.928 0.850 0.831 0.615	-	-	Prasad & Manghani (1997)
Limestone		0* 10*	-	1.02 1.35	1.01 1.09	0.96 0.92	Ringstad & Fjær (1997)
Limestone + oil		0* 10*	-	0.95 0.67	0.89 0.41	0.95 0.94	Ringstad & Fjær (1997)
Limestone	0.5	-	0-10	0.5-0.9	-	-	Todd & Simmons (1972)
Epidosite	0.5	100-240	100	0.95	-	-	Gangi & Carlson (1996)

From Ojala & Fjær, 2007

 $\bigcirc NTNU$

Effective Stress for Velocities

- Stress changes lead to changes in
 - Framework stiffness (by grain contacts, cementation); $f(\sigma-p_f)$?
 - Porosity; $f(\sigma p_f)$
 - Free pore fluid; f(p_f)
 - Soft grain coatings, such as cla on sand or adsorbed /bound water in clay;
 f(p_f)
 - + Frequency dependent processes where relaxation time may depend on either net stress or pore pressure or something else...
 - A simple model can be constructed by sorting processes that depend on net stress vs. processes that depend only on pore pressure:

$$\Delta v_{Qj} = A(\Delta \sigma - \Delta p_f) + B \Delta p_f$$
$$\Rightarrow$$
$$S_{Qj} = A; \quad n_{Qj} = 1 - \frac{B}{A}$$

