

GEOMECHANICS FOR GEOPHYSICISTS

Basics of Rock Mechanics & Geomechanics

Rune M Holt

Trondheim, 25 April 2012

Basics of Rock Mechanics & Geomechanics

- Stresses, strains, elastic moduli, Hooke's law & wave equations
 - ✓ Isotropic & Anisotropic solids
- Poroelasticity, effective stress
- Rock failure

Linear Elasticity

Rock Mechanics sign convention: Compressive stresses are positive

Plotting corresponding values of $\sigma \, {\rm and} \, \, \tau$

 σ is <u>normal stress</u> and τ is <u>shear stress</u>

 $\tau = 0$ for $\sigma = \sigma_1$ or σ_2

 σ_1 and σ_2 are principal stresses

Complete description of the stress state: **the stress tensor**

$$\vec{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$$

When a body is at rest, not net translational or rotational forces can act on it

$$\begin{array}{l} \Rightarrow \quad \tau_{yx} = \tau_{xy} \\ \tau_{zx} = \tau_{xz} \\ \tau_{zy} = \tau_{yz} \end{array} \end{array} \begin{array}{l} \text{The stress tensor} \\ \text{is symmetric} \\ \text{is symmetric} \end{array}$$

$$\sum_{j} \frac{\partial \sigma_{ji}}{\partial x_{j}} = 0$$

Equations of static equilibrium

The components of the stress tensor depends on our choice of coordinate system

$$\vec{\sigma} = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{pmatrix} \rightarrow \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

Some combinations of the components are invariant to a rotation of the coordinate system, for instance:

The mean stress
$$\overline{\sigma} = \frac{1}{3} (\sigma_x + \sigma_y + \sigma_z) = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3)$$
 (= *p*)
The generalized shear stress $q = \sqrt{\frac{3}{2} [(\sigma_1 - \overline{\sigma})^2 + (\sigma_2 - \overline{\sigma})^2 + (\sigma_3 - \overline{\sigma})^2]}$

Stress Graphical representations of a stress state

SINTEF ONTNU

Rock mechanics sign convention: Compression (L' < L) is positive

General form:

Strain tensor

$$\vec{\varepsilon} = \begin{pmatrix} \varepsilon_x & \Gamma_{xy} & \Gamma_{xz} \\ \Gamma_{yx} & \varepsilon_y & \Gamma_{yz} \\ \Gamma_{zx} & \Gamma_{zy} & \varepsilon_z \end{pmatrix} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{pmatrix}$$

Some combinations of the components are invariant to a rotation of the coordinate system, for instance:

Volumetric strain

$$\varepsilon_{vol} = \varepsilon_x + \varepsilon_y + \varepsilon_z = -\frac{\Delta V}{V}$$

L

x

Z

Hooke's law:

 $\mathcal{E}_z \propto \sigma_z$

EE = Young's modulus

0

 $[E] = \mathsf{GPa}$

Poisson's ratio v

$$v = -\frac{\varepsilon_x}{\varepsilon_z}$$

• NTNU

Bulk modulus:

$$K = \frac{\overline{\sigma}}{\varepsilon_{vol}}$$
$$[K] = GPa$$

If

$$\sigma_x = \sigma_y = \sigma_z = \sigma_p$$

 $K = \frac{\sigma_p}{\varepsilon_{vol}}$

$$\tau_{xz} = 2G\Gamma_{xz}$$

Shear modulus G

[*G*] = GPa

Hooke's law -

general version:

Hooke's law -

Inverse general version:

$$\sigma_{x} = (\lambda + 2G)\varepsilon_{x} + \lambda\varepsilon_{y} + \lambda\varepsilon_{z}$$

$$\sigma_{y} = \lambda\varepsilon_{x} + (\lambda + 2G)\varepsilon_{y} + \lambda\varepsilon_{z}$$

$$\sigma_{z} = \lambda\varepsilon_{x} + \lambda\varepsilon_{y} + (\lambda + 2G)\varepsilon_{z}$$

$$\tau_{yz} = 2G\Gamma_{yz}$$

$$\tau_{xz} = 2G\Gamma_{xz}$$

$$\tau_{xy} = 2G\Gamma_{xy}$$

Important footnote: When using Hooke's law in geomechanical applications, remember that strain is a relative quantity (change in length or angle) and is associated with a <u>change</u> in stress.

Relations between elastic moduli for isotropic solids	Modulus	λ;G	H;G	K;G	<i>E;v</i>
	Plane wave modulus <i>H</i>	$\lambda + 2G$	Н	$K + \frac{4}{3}G$	$E \frac{(1-\nu)}{(1+\nu)(1-2\nu)}$
	Shear modulus <i>G</i>	G	G	G	$E\frac{1}{2(1+\nu)}$
	Bulk modulus <i>K</i>	$\lambda + \frac{2}{3}G$	$H - \frac{4}{3}G$	K	$E\frac{1}{3(1-2\nu)}$
	Young's modulus <i>E</i>	$\frac{G(3\lambda + 2G)}{\lambda + G}$	$\frac{G(3H-4G)}{H-G}$	$\frac{9KG}{3K+G}$	E
	Lamè coefficient λ	λ	H-2G	$K - \frac{2}{3}G$	$E\frac{\nu}{(1+\nu)(1-2\nu)}$
	Poisson's ratio v	$\frac{\lambda}{2(\lambda+G)}$	$\frac{H-2G}{2(H-G)}$	$\frac{3K-2G}{2(3K+G)}$	V

The Wave Equation

• Dynamic equilibrium: Newton's 2nd law combined with Hooke's law

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \sum_j \frac{\partial \sigma_{ij}}{\partial x_j}$$

• Solutions: Plane waves

e.g. for propagation || x:
$$u_x = u_x^0 e^{j(\omega t - q_P x)}$$
 (P-wave)

$$u_{y} = u_{y}^{0} e^{j(\omega t - q_{s}x)}$$
 (S-wave)

- ω: Angular frequency =2πf
- q: Wavenumber = $2\pi/\lambda_w$; λ_w is the wavelength

P- & S-Wave Velocities

• In isotropic solids:

$$v_{p} = \sqrt{\frac{K + \frac{4}{3}G}{\rho}} = \sqrt{\frac{\lambda + 2G}{\rho}}$$
$$v_{s} = \sqrt{\frac{G}{\rho}}$$

The P-wave ("plane wave") modulus is equal to the uniaxial compaction modulus

Phase & Group Velocities

•Phase Velocity:

Velocity of a moving wavefront = $\omega/q = f\lambda_w$

• Group Velocity:

Velocity of carrier signal =d∞/dq (≅energy velocity)

Anisotropy

Anisotropy

 Anisotropy is a result of structural order caused by heterogeneity at a length scale << wavelength of the probe.

Sources of Anisotropy in Rocks

Lithological (Intrinsic) anisotropy

- Lamination / Bedding
- Oriented particles
 - ✤ Anisotropic (& oriented) particles

Stress-Induced (Extrinsic) anisotropy

- Cracks & Fractures
- Directly stress-induced by elastic nonlinearity

Elasticity theory for Anisotropic Solids

Hooke's law:

$$\sigma_{ij} = \sum_{kl} C_{ijkl} \varepsilon_{kl}$$

□ The 4th rank tensor C_{ijkl} has 3⁴=81 components, but reduces directly to 21, because i ≤ j; k ≤ l; ij ≤ kl

□ Permits reduced Voigt notation: C_{ijkl}→C_{IJ}

ONTNU

Elasticity theory for Anisotropic Solids

Hooke's law in Voigt notation:

$$\sigma_{I} = C_{IJ} \varepsilon_{J}$$

C is a 6x6 matrix; σ and ϵ now are 6-component vectors, indices 1-3 represent normal and 4-6 shear stresses or strains

□ The number of components in the C-matrix reflects material symmetry:

➢ Orthorhombic symmetry → 9
➢ Transverse Isotropy (TI) → 5; with symmetry-axis z C₁₁=C₂₂, C₁₃=C₂₃, C₄₄=C₅₅, and C₆₆=½(C₁₁-C₁₂)

$$\begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{pmatrix}$$

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix} \qquad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ 2\Gamma_{yz} \\ 2\Gamma_{yz} \\ 2\Gamma_{xz} \\ 2\Gamma_{xy} \end{pmatrix}$$

Compliance:

$$S = C^{-1}$$

Hooke's law: $\sigma = C\varepsilon$

On explicit form:

$$\sigma_x = C_{11}\varepsilon_x + C_{12}\varepsilon_y + C_{13}\varepsilon_z$$

$$\sigma_y = C_{12}\varepsilon_x + C_{22}\varepsilon_y + C_{23}\varepsilon_z$$

$$\sigma_z = C_{13}\varepsilon_x + C_{23}\varepsilon_y + C_{33}\varepsilon_z$$

$$\tau_{yz} = 2C_{44}\Gamma_{yz}$$

$$\tau_{xz} = 2C_{55}\Gamma_{xz}$$

$$\tau_{xy} = 2C_{66}\Gamma_{xy}$$

$$\varepsilon = S\sigma$$

$$\sigma_{x} = (\lambda + 2G)\varepsilon_{x} + \lambda\varepsilon_{y} + \lambda\varepsilon_{z}$$

$$\sigma_{y} = \lambda\varepsilon_{x} + (\lambda + 2G)\varepsilon_{y} + \lambda\varepsilon_{z}$$

$$\sigma_{z} = \lambda\varepsilon_{x} + \lambda\varepsilon_{y} + (\lambda + 2G)\varepsilon_{z}$$

$$\tau_{yz} = 2G\Gamma_{yz}$$

$$\tau_{xz} = 2G\Gamma_{xz}$$

$$\tau_{xy} = 2G\Gamma_{xy}$$

Christoffel Wave Equation

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_j} = C_{ijkl} \frac{\partial^2 u_k}{\partial x_j \partial x_l}$$

We insert a wave solution:

$$u_i = u_i^0 e^{j(\omega t - q_i x_i)}$$

where the directional cosine of the wave propagation direction is:

$$\mathbf{\Psi} \begin{bmatrix} C_{ijkl} n_j n_l - \rho \mathbf{v}^2 \delta_{ik} \end{bmatrix} \mathbf{\bullet} \begin{bmatrix} u_k^0 \end{bmatrix} = \mathbf{0}$$

Christoffel Wave Equation

$$\left[C_{ijkl}n_{j}n_{l}-\rho v^{2}\delta_{ik}\right]\cdot\left[u_{k}^{0}\right]=0$$

$$\begin{bmatrix} C_{11}n_1^2 + C_{66}n_2^2 + C_{44}n_3^2 - \rho v^2 & (C_{11} - C_{66})n_1n_2 & (C_{13} + C_{44})n_1n_3 \\ (C_{11} - C_{66})n_1n_2 & C_{66}n_1^2 + C_{11}n_2^2 + C_{44}n_3^2 - \rho v^2 & (C_{13} + C_{44})n_2n_3 \\ (C_{13} + C_{44})n_1n_3 & (C_{13} + C_{44})n_2n_3 & C_{44}(n_1^2 + n_2^2) + C_{33}n_3^2 - \rho v^2 \end{bmatrix} \begin{bmatrix} u_1^0 \\ u_2^0 \\ u_3^0 \end{bmatrix} = 0$$

Example:

Wave propagation along symmetry axis

 \Box n₁ = n₂ = 0; n₃ = 1

$$\begin{bmatrix} C_{44} - \rho v^2 & 0 & 0 \\ 0 & C_{44} - \rho v^2 & 0 \\ 0 & 0 & C_{33} - \rho v^2 \end{bmatrix} \begin{bmatrix} u_1^0 \\ u_2^0 \\ u_3^0 \end{bmatrix} = 0$$

$$\mathbf{v}_{P;z} = \sqrt{\frac{C_{33}}{\rho}}$$

$$\mathbf{v}_{S;zx} = \mathbf{v}_{S;zy} = \sqrt{\frac{C_{44}}{\rho}}$$

(u || x or y; l || z)

(u || z; l || z)

Example: Wave propagation in symmetry plane

\Box For example let $n_1 = 1$; $n_2 = n_3 = 0$

$$\begin{bmatrix} C_{11} - \rho v^2 & 0 & 0 \\ 0 & C_{66} - \rho v^2 & 0 \\ 0 & 0 & C_{44} - \rho v^2 \end{bmatrix} \begin{bmatrix} u_1^0 \\ u_2^0 \\ u_3^0 \end{bmatrix} = 0$$

 $\mathbf{v}_{P;x} = \sqrt{\frac{C_{11}}{\rho}}$

 $(u \parallel x; I \parallel x)$

$$v_{s;xz} = \sqrt{\frac{C_{44}}{\rho}}$$

(u || z; l || x)

(u || y; l || x)

Wave propagation along a general direction

□ Because of TI, we can look at e.g. the xz-plane only; choosing $n_1 = \sin\theta$; $n_2 = 0$; $n_3 = \cos\theta$ (θ is angle between wave propagation direction and z-axis)

$$\mathbf{v}_{s} = \sqrt{\frac{C_{66}\sin^{2}\theta + C_{44}\cos^{2}\theta}{\rho}}$$

Particle motion || y; SH wave

$$v_{qP \text{ or } S} = \sqrt{\frac{C_{11} \sin^2 \theta + C_{33} \cos^2 \theta + C_{44} \pm \sqrt{\Delta}}{2\rho}}$$

Particle motion in xz-plane; quasiP & quasi-SV wave

 $\Delta = \left[(C_{11} - C_{44}) \sin^2 \theta - (C_{33} - C_{44}) \cos^2 \theta \right]^2 + 4[C_{13} + C_{44}]^2 \sin^2 \theta \cos^2 \theta$

Thomsen parameters

□ Simplifying by introducing 3 anisotropy parameters which are small (→ 0 for isotropy).

$$\delta = \frac{(C_{13} + C_{44})^2 - (C_{33} - C_{44})^2}{2C_{33}(C_{33} - C_{44})}$$

"moveout parameter"

Angular dependence of wave velocities expressed by Thomsen's parameters

$$v_P(\theta) = v_P(0) \left[1 + \delta \sin^2 \theta \cos^2 \theta + \varepsilon \sin^4 \theta \right]$$

$$\mathbf{v}_{SV} = \mathbf{v}_{S}(0) \left[1 + \frac{\mathbf{v}_{P}^{2}(0)}{\mathbf{v}_{S}^{2}(0)} (\varepsilon - \delta) \sin^{2} \theta \cos^{2} \theta\right]$$
$$\mathbf{v}_{SH}(\theta) = \mathbf{v}_{S}(0) \left[1 + \gamma \sin^{2} \theta\right]$$

In anisotropic media, the phase and group velocities will only be equal along symmetry directions (provided no dispersion)

Poroelasticity

Poroelasticity

2 stresses: The external (total) stress σ_{ij} The pore pressure p_f

2 strains: The strain of a volume element attached to the rock's framework; ε_{ii}^{s}

Volumetric strain

$$\varepsilon_{vol} = -\frac{\Delta V}{V}$$

The "increment of fluid content"; i.e.

Porosity:

$$\phi = \frac{V_p}{V} = \frac{V_f}{V}$$

$$\frac{displaced fluid volume}{total volume} = \frac{\Delta V_p - \Delta V_f}{V} \Longrightarrow$$
$$\zeta = -\phi \left(\frac{\Delta V_p}{V_p} + \frac{\Delta p_f}{K_f}\right)$$

Note: ε >0 for compaction, Δ V>0 for expansion

Biot-Hooke's law

Isotropic stress conditions

$$\Delta \sigma = K \varepsilon_{vol} - C \zeta$$
$$\Delta p_f = C \varepsilon_{vol} - M \zeta$$

K, *C* & *M* are poroelastic coefficients, related to the elastic coefficients of the ingredients:

- K_f: Bulk modulus of pore fluid
- K_s: Bulk modulus of solid grains
- φ: Porosity
- K_{fr}: Bulk modulus of the drained rock (rock "framework")
- G_{fr:} Shear modulus of the rock framework

K is the bulk modulus in undrained isotropic loading (no fluid expelled)

$$\Delta \sigma = K \mathcal{E}_{vol}$$
 when $\zeta = 0$

In this case, pore pressure builds up:

$$\Delta p_f = \frac{C}{K} \Delta \sigma$$

C/K is named Skempton's B-parameter


```
2<sup>nd</sup> "thought
experiment"
```

 K_{fr} is the bulk modulus measured in drained, isotropic loading (with constant (or zero) pore pressure):

If only pores (not grains) deform, then $\Delta V_p = \Delta V$ and $\alpha = 1$.


```
3<sup>rd</sup> "thought
experiment"
```

In an unjacketed test, external stress = pore pressure & porosity is constant =>

From these 3 experiment, the relations between the poroelastic coefficients and the elastic properties of the ingredients can be derived.

+ $G = G_{fr}$

by hypothesis; no fluid effect on shear deformation

Biot-Gassmann equation

• Two equivalent expressions:

$$\overline{K = K_{fr} + \frac{K_f}{\phi} \frac{\alpha^2}{1 + \frac{K_f}{\phi K_s} (\alpha - \phi)}}$$
$$\overline{\frac{K}{K_s - K} = \frac{K_{fr}}{K_s - K_{fr}} + \frac{K_f}{\phi (K_s - K_f)}}$$

 Of great importance in seismic interpretation; contains fluid impact on P-wave velocity:

$$\mathbf{v}_{P} = \sqrt{\frac{K + \frac{4}{3}G}{\rho}}$$

The effective stress principle

Volumetric deformation of a poroelastic material is controlled by an effective stress

so that
$$\sigma' = \sigma - \alpha p_f$$
 always

 $\alpha \approx 1$ for soils and soft rocks ("Terzaghi's effective stress")

 $\alpha < 1$ for hard rocks

In general, strain is controlled by:

$$\sigma_{ij} = \sigma_{ij} - \alpha p_f \delta_{ij}$$

 $δ_{ij}$ = 0 if i≠j; no effect on shear

Biot-Hooke's law

 Utilizing the effective stress principle, we can use Hooke's law as for solids – but with effective stresses replacing total stresses, and frame moduli replacing solid moduli (only normal stresses shown):

$$\begin{split} & \varepsilon_{x} = \frac{1}{E_{fr}} \Delta \sigma_{x}^{'} - \frac{v_{fr}}{E_{fr}} \Delta \sigma_{y}^{'} - \frac{v_{fr}}{E_{fr}} \Delta \sigma_{z}^{'} \\ & \varepsilon_{y} = -\frac{v_{fr}}{E_{fr}} \Delta \sigma_{x}^{'} + \frac{1}{E_{fr}} \Delta \sigma_{y}^{'} - \frac{v_{fr}}{E_{fr}} \Delta \sigma_{z}^{'} \\ & \varepsilon_{z} = -\frac{v_{fr}}{E_{fr}} \Delta \sigma_{x}^{'} - \frac{v_{fr}}{E_{fr}} \Delta \sigma_{y}^{'} + \frac{1}{E_{fr}} \Delta \sigma_{z}^{'} \end{split}$$

Pore Compressibility

- Two definitions of pore compressibility:
 - External stress change (constant pore pressure) \Rightarrow

$$\left(\frac{1}{K_p}\right) = C_{pc} = -\frac{1}{V_p} \left(\frac{\Delta V_p}{\Delta \sigma}\right)_{p_f = const} = \frac{\alpha}{\phi K_{fr}} = \frac{1}{\phi} \left(\frac{1}{K_{fr}} - \frac{1}{K_s}\right)$$

Pore pressure change (constant external stress)

$$\Rightarrow$$

$$(\frac{1}{K_{pp}} =)C_{pp} = \frac{1}{V_p} \left(\frac{\Delta V_p}{\Delta p_f}\right)_{\sigma=const} = \frac{1}{\phi} \left(\frac{1}{K_{fr}} - \frac{1}{K_s}\right) - \frac{1}{K_s} \left(=C_{pc} - \frac{1}{K_s}\right)$$

EF

Zimmerman, 1991

Porosity Change

So: The effective stress coefficient = 1 for porosity ! (may differ if solid matrix is not homogeneous)

The effective stress principle

M WARNING

The effective stress principles above are valid only for the parameters for which they are derived and are based on linear poroelasticity.

For e.g. rock failure

$$\sigma_{ij} = \sigma_{ij} - \beta p_f \delta_{ij}$$

where $\beta \neq \alpha$ (evidence for $\beta \approx 1$).

For stress dependent wave velocities, permeability etc., different forms of effective stress principles may (or may not!) apply.

Time dependence in poroelasticity

The ζ - parameter is related to the volumetric flow rate Q [m³/s] per unit area A [m²]:

$$\frac{\partial \zeta}{\partial t} = \frac{\nabla \cdot \vec{Q}}{A}$$

Darcy's law

k: permeability [1 Darcy \approx 1 (µm)²] η : pore fluid viscosity [1 cP = 10⁻³ Ns/m²]

can be coupled to the poroelastic equations =>

Poroelastically coupled flow equations

Consolidation theory

Consolidation theory – Time dependent poroelasticity

The evolution of pore pressure equilibrium in a uniaxially deforming rock sample after loaded with a stress σ_{z0} at t=0 is given by

$$\frac{\partial p_f}{\partial t} = C_D \frac{\partial^2 p_f}{\partial z^2}$$

$$C_D = \frac{k}{\eta} (M - \frac{C^2}{H}) \approx \frac{kK_f}{\eta \phi} \left[1 + \frac{K_f}{\phi(K_{fr} + \frac{4}{3}G_{fr})} \right]^{-1}$$

Consolidation theory – Time dependent poroelasticity

• The time (t_c) required to establish pore pressure equilibrium is given by the characteristic length scale (I_c) and the diffusion (or consolidation) coefficient C_D :

$$t_c \approx \frac{l_c^2}{C_D} \qquad C_D \approx \frac{kK_f}{\eta\phi} \left[1 + \frac{K_f}{\phi(K_{fr} + \frac{4}{3}G_{fr})} \right]^{-1}$$

• Note: Consolidation time is inversely proportional to permeability – makes a tremendeous difference between a Darcysand and a nanoDarcy shale! Dashed curve: Infinitely high column

Rock failure

Tensile failure

Failure criterion: $\sigma'_3 = -T_0$

 T_0 = tensile strength

It is commonly assumed that the effective stress controlling rock failure is the net stress (effective stress coefficient =1)

Shear failure

Shear failure

The Mohr-Coulomb criterion

$$|\tau| = S_0 + \mu \sigma'$$

 $S_0 = \text{cohesion}$

 μ = coefficient of internal friction

 $\tan \varphi = \mu$

 φ = friction angle

 \bigcirc NTNU

() SINTEF

• NTNU

Shear failure

The Mohr-Coulomb criterion (in terms of principal stresses):

Compaction failure

Failure criterion:

$${p'}^2 + q^2 = p*^2$$

 p^* = crushing pressure

Grain crushing Pore collapse

Plasticity & Hardening

Anisotropic failure criterion

In layered rock, one may anticipate reduced cohesion (S_{0w}) and friction angle (ϕ_w) for a plane of a given orientation.

Shear failure along the weak plane occurs for a range of orientations of the plane with respect to the stress field.

