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Basics of Rock Mechanics & Geomechanics 

• Stresses, strains, elastic moduli, Hooke’s law & wave 
equations 

 Isotropic & Anisotropic solids  

• Poroelasticity, effective stress 

• Rock failure  
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Linear Elasticity 



Stress 

xxx kg 

F


x-sectional 
area A 

Stress:  
F
A

σ =

Unit: Pa (Pascal) = N/m2 

or: psi (pounds per square inc) 

     1 kpsi = 6.895 MPa 

Rock Mechanics sign convention: Compressive stresses are positive 



Stress 
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Normal stress  '
nF

A
σ =
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Shear stress  
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Stress 

σ

Plotting corresponding values of σ and τ  
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σ  is normal stress and τ is shear stress 



Stress 

σ

τ = 0 for σ = σ 1 or σ 2 

τ

θ 

σ

τ
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1σ2σ

σ 1 and σ 2 are principal stresses 



Complete description of the 
stress state: the stress tensor 

Stress 
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When a body is at rest, not net translational or rotational forces can act on it 

⇒ 
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The stress tensor  
is symmetric 0ji

j jx
σ∂

=
∂∑ Equations of static 

equilibrium 



Stress 

The components of the stress tensor 
depends on our choice of coordinate system 
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Some combinations of the components are invariant  
to a rotation of the coordinate system, for instance: 

The mean stress ( ) ( )1 2 3
1 1 ( )
3 3x y z pσ σ σ σ σ σ σ= + + + =+ =

The generalized shear stress ( ) ( ) ( )2 2 2
1 2 3

3
2

q σ σ σ σ σ σ = − + − + − 



Stress 

σ

τ

1σ
3σ 2σ

Graphical representations of a stress state 
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( )p σ=

Mohr circle(s) 

Principle stress plot 

q-p - plot 



Strain 

Elongation 

'L L L
L L

ε − ∆
= = −

Rock mechanics sign convention: Compression (L’ < L) is positive 



Strain 

Shear strain 

1 tan
2

Γ = Ψ



Strain 
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Strain 

Strain tensor 

Some combinations of the components are invariant  
to a rotation of the coordinate system, for instance: 

Volumetric strain vol x y z
V

V
ε ε ε ε ∆

= + + = −



Elastic moduli 

z zε σ∝

Hooke’s law: 

z
z E
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E = Young’s modulus 

[E] = GPa 
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Elastic moduli 

Bulk modulus: 
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Elastic moduli 

Hooke’s law – 

general version: 



Elastic moduli 

Hooke’s law – 

Inverse general version: 
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Important footnote: When using Hooke’s law in geomechanical 
applications, remember that strain is a relative quantity (change 
in length or angle) and is associated with a change in stress. 



Modulus 
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Relations 
between  

elastic moduli for 
isotropic solids 

Fluids: 
G = E = 0 

K = λ 
ν = ½  

 



The Wave Equation 

• Dynamic equilibrium: Newton’s 2nd law combined with Hooke’s law 

 

 

 

• Solutions: Plane waves 
e.g. for propagation || x:                              (P-wave) 
 

      (S-wave) 

 

ω: Angular frequency =2πf 

q:  Wavenumber =2π/λw ; λw  is the wavelength 

2

2
iji

j j

u
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σ
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∂∂
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( )0 Sj t q x
y yu u e ω −=
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P- & S-Wave Velocities 

• In isotropic solids: 

4
23v

v

P

S

K G G

G

λ
ρ ρ

ρ

+ +
= =

=

The P-wave (”plane 
wave”) modulus is 
equal to the uniaxial 
compaction modulus 
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Phase & Group Velocities 

•Phase Velocity:  

Velocity of a moving wavefront = ω/q =fλw 

• Group Velocity:  

Velocity of carrier signal =dω/dq 

(≅energy velocity) 



Anisotropy 

 



Anisotropy is a result 
of structural order 
caused by 
heterogeneity at a 
length scale << 
wavelength of the 
probe. 

Anisotropy 



Sources of Anisotropy in Rocks 

Lithological (Intrinsic) anisotropy 
  Lamination / Bedding 

  Oriented particles 
  Anisotropic (& oriented) particles 

 

Stress-Induced (Extrinsic) anisotropy 
  Cracks & Fractures 

  Directly stress-induced by elastic nonlinearity 



Elasticity theory for Anisotropic Solids 

Hooke’s law: 
 

The 4th rank tensor Cijkl has 
34=81 components, but 
reduces directly to 21, because 
i  j; k  l; ij   kl 
 

  Permits reduced Voigt 
notation: Cijkl→CIJ 

ij ijkl kl
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Cσ ε= ∑

1
2
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x x

ε
 ∂∂

= +  ∂ ∂ 

11 1
22 2
33 3
23 4
13 5
12 6

→
→
→
→
→
→

We  tend 
to 
associate    
1 → x              
2 → y               
3 → z 



Elasticity theory for Anisotropic Solids 

 Hooke’s law in Voigt notation: 
 

C is a 6x6 matrix; σ and ε now are 6-component vectors, indices 1-3 represent 
normal and 4-6 shear stresses or strains 

 The number of components in the C-matrix reflects material 
symmetry: 

 Orthorhombic symmetry → 9 
 Transverse Isotropy (TI) → 5; with symmetry-axis z C11=C22, C13=C23, C44=C55, 
and C66=½(C11-C12) 

 

I IJ JCσ ε=



Hooke’s law: 

On explicit form: 

Compliance:  
1S C−=

Sε σ=Cσ ε=



Christoffel Wave Equation 
2 2

2
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i
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2 0v 0ijkl j l ik kC n n uρ δ   − • =   

We insert a wave solution: 

where the directional cosine of the wave 
propagation direction is: 


 



Christoffel Wave Equation 

2 0v 0ijkl j l ik kC n n uρ δ   − ⋅ =   

2 2 2 2 0
11 1 66 2 44 3 11 66 1 2 13 44 1 3 1

2 2 2 2 0
11 66 1 2 66 1 11 2 44 3 13 44 2 3 2

2 2 2 2 0
13 44 1 3 13 44 2 3 44 1 2 33 3 3

( ) ( )
( ) ( ) 0
( ) ( ) ( )

C n C n C n v C C n n C C n n u
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ρ
ρ

ρ

   + + − − +
   − + + − + =   
   + + + + −   



Example:  
Wave propagation along symmetry axis 

 n1 = n2 = 0; n3 = 1 
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Example:  
Wave propagation in symmetry plane 

 For example let n1 = 1; n2 = n3 = 0 

 2 0
11 1

2 0
66 2

2 0
44 3

0 0
0 0 0
0 0

C v u
C v u

C v u

ρ
ρ

ρ

   −
   − =   
   −   
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Shear Wave Splitting 



Wave propagation along a general direction 

 Because of TI, we can look at e.g. the xz-plane only; choosing 
n1 = sinθ; n2 = 0; n3 = cosθ (θ is angle between wave 
propagation direction and z-axis) 

2 2
66 44sin cosvS

C Cθ θ
ρ
+

=

2 2
11 33 44

qP or S
sin cosv

2
C C Cθ θ

ρ
+ + ± ∆

=

Particle motion  || y; 
SH wave 

Particle motion  in xz-plane; 
quasiP & quasi-SV wave 

22 2 2 2 2
11 44 33 44 13 44( )sin ( )cos 4[ ] sin cosC C C C C Cθ θ θ θ ∆ = − − − + + 



Thomsen parameters 

 Simplifying by introducing 3 anisotropy parameters which are 
small (→ 0 for isotropy). 

11 33

332
C C

C
ε −

=

66 44

442
C C

C
γ −

=

2 2
13 44 33 44

33 33 44

( ) ( )
2 ( )

C C C C
C C C

δ + − −
=

−

P-wave 
anisotropy 

S-wave 
anisotropy 

”moveout 
parameter” 



Angular dependence of wave velocities 
expressed by Thomsen’s parameters 

 In anisotropic media, the phase and group velocities will only be 
equal along symmetry directions (provided no dispersion) 

2 2 4v ( ) v (0) 1 sin cos sinP Pθ δ θ θ ε θ = + + 

2
2 2

2

v (0)v v (0)[1 ( )sin cos ]
v (0)

P
SV S

S

ε δ θ θ= + −

2v ( ) v (0) 1 sinSH Sθ γ θ = + 



Poroelasticity 



2 stresses:  The external (total) stress σij 
  The pore pressure pf 
  
2 strains:  The strain of a volume element attached to  
  the rock’s framework; εij

s 
   

  Volumetric strain  
 
 
 
 
 

 

 

The ”increment of fluid content”; i.e.  

 
p f

p f

p f

V Vdisplaced fluid volume
total volume V

V p
V K

ζ φ

∆ − ∆
= ⇒

 ∆ ∆
= − +  

 

Poroelasticity 

vol
V

V
ε ∆

= −

Note: ε>0 for compaction, ∆V>0 for expansion 

p fV V
V V

φ = =

Porosity: 



Biot-Hooke’s law 

vol

f vol

K C
p C M
σ ε ζ

ε ζ
∆ = −
∆ = −

K, C & M are poroelastic coefficients, related to the elastic coefficients 
of the ingredients: 

Kf:   Bulk modulus of pore fluid 

Ks:   Bulk modulus of solid grains 

φ:   Porosity 

Kfr:  Bulk modulus of the drained rock (rock ”framework”) 

Gfr:  Shear modulus of the rock framework  

 

Isotropic stress 
conditions 



The poroelastic coefficients 

K is the bulk modulus in undrained isotropic loading (no fluid expelled) 

volKσ ε∆ = when 0ζ =

In this case, pore pressure builds up: 

f
Cp
K

σ∆ = ∆

C/K is named Skempton’s B-parameter 

1st ”thought 
experiment” 



The poroelastic coefficients 

Kfr is the bulk modulus measured in drained, isotropic loading (with 
constant (or zero) pore pressure): 

fr volKσ ε∆ =

0fp = ⇒ 2

fr
CK K
M

= −

and: 
pV C

V M
α

∆
= ≡

∆

defines the Biot 
coefficient α 

If only pores (not grains) deform, then ∆Vp=∆V and α = 1. 

2nd ”thought 
experiment” 



The poroelastic coefficients 
In an unjacketed test, external stress = pore pressure & porosity is constant => 

1 1( )

vol
s

f
f s

K

p
K K

σε

ζ φ

∆
=

= − − ∆

fp σ=

From these 3 experiment, the relations between the 
poroelastic coefficients and the elastic properties of the 
ingredients can be derived. 

3rd ”thought 
experiment” 



The poroelastic coefficients 

2
2

1

1

1 ( )

fr

s

s f

f
fr fr

f

s

KC
M K

M K K
K

K K M K K
K

α

α φ φ

αα
φ α φ

φ

= = −

−
= +

= + = +
+ −

Biot-
Gassmann 
equation 

Biot 
coefficient 

+ frG G=
by hypothesis; no fluid effect on shear deformation 



Biot-Gassmann equation 

• Two equivalent expressions: 

 

 

 

 
• Of great importance in seismic interpretation; contains fluid 

impact on P-wave velocity: 

2

1 ( )

f
fr

f

s

K
K K K

K

α
φ α φ

φ

= +
+ −

( )
fr f

s s fr s f

K KK
K K K K K Kφ

= +
− − −

4
3vP

K G

ρ

+
=



The effective stress principle 

Volumetric deformation of a poroelastic material is controlled by an 
effective stress 

'
fpσ σ α= −

so that  '
fr volKσ ε= always 

1α ≈ for soils and soft rocks (”Terzaghi’s effective stress”) 

1α < for hard rocks 

'
ij ij f ijpσ σ α δ= −In general, strain is 

controlled by: 
δij = 0 if i≠j; no effect 
on shear 



Biot-Hooke’s law 
• Utilizing the effective stress principle, we can use 

Hooke’s law as for solids – but with effective stresses 
replacing total stresses, and frame moduli replacing 
solid moduli (only normal stresses shown): 

 
' ' '

' ' '

' ' '

1

1

1

fr fr
x x y z

fr fr fr

fr fr
y x y z

fr fr fr

fr fr
z x y z

fr fr fr

E E E

E E E

E E E

ν ν
ε σ σ σ

ν ν
ε σ σ σ

ν ν
ε σ σ σ

= ∆ − ∆ − ∆

= − ∆ + ∆ − ∆

= − ∆ − ∆ + ∆



Pore Compressibility 

• Two definitions of pore compressibility: 

 
– External stress change (constant pore pressure)   ⇒ 

 

 

 

– Pore pressure change (constant external stress)                       
⇒ 
 

1 1 1 1 1( ) ( )
f

p
pc

p p fr fr sp const

V
C

K V K K K
α

σ φ φ
=

∆ 
= = − = = − ∆ 

Zimmerman, 1991 

1 1 1 1 1 1 1( ) ( ) ( )p
pp pc

pp p f fr s s sconst

V
C C

K V p K K K K
σ

φ
=

 ∆
= = = − − = −  ∆ 



Porosity Change 

p

p

V V
V V

φ
φ

∆∆ ∆
= −

( )f
fr

p
K

α φφ σ−
−∆ = ∆ − ∆

So: The effective stress coefficient = 1 for porosity !     

(may differ if solid matrix is not homogeneous) 



The effective stress principle 
 M   WARNING  

The effective stress principles above are valid only for the parameters for 
which they are derived and are based on linear poroelasticity. 

 For e.g. rock failure 

  

  

 

where β ≠ α (evidence for β≈1). 

 

For stress dependent wave velocities, permeability etc.,  different forms of 
effective stress principles may (or may not!) apply. 

 

'
ij ij f ijpσ σ β δ= −



Time dependence in poroelasticity 

The ζ - parameter is related to the volumetric flow rate Q [m3/s] per 
unit area A [m2]:  

 

 

Darcy’s law  

 

 

can be coupled to the poroelastic equations => 

 

 Poroelastically coupled flow equations 

 Consolidation theory 

 

Q
t A
ζ∂ ∇ ⋅

=
∂



f
Q k p
A η

− = ∇



k: permeability  
    [1 Darcy ≈ 1 (µm)2] 
η: pore fluid viscosity  
    [1 cP = 10-3 Ns/m2] 
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Consolidation theory –                             
Time dependent poroelasticity 

The evolution of pore pressure equilibrium  in a 
uniaxially deforming rock sample after loaded 
with a stress σz0 at t=0 is given by 
 

 

 

 

2

2
f f

D

p p
C

t z
∂ ∂

=
∂ ∂

1

2

( ) 1 4( )
3

f f
D

fr fr

kK Kk CC M
H K Gη ηφ φ

−
 
 

= − ≈ + 
 +
 

for Kfr & Gfr << Ks 
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Consolidation theory –                             
Time dependent poroelasticity 

  
• The time (tc)required to establish pore 
pressure equilibrium is given by the 
characteristic length scale (lc) and the 
diffusion (or consolidation) coefficient CD: 

 

 

 

 

• Note: Consolidation time is inversely 
proportional to permeability – makes a 
tremendeous difference between a Darcy-
sand and a nanoDarcy shale! 

2
c

c
D

lt
C

≈

1

1 4( )
3

f f
D

fr fr

kK K
C

K Gηφ φ

−
 
 

≈ + 
 +
 

Dashed curve: Infinitely high column 
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Rock failure 



Tensile failure 

Failure criterion: 

T0 = tensile strength 

It is commonly assumed that 
the effective stress controlling 
rock failure is the net stress 
(effective stress coefficient =1) 



Shear failure 

Failure criterion: 



Shear failure 

The Mohr-Coulomb criterion S0 = cohesion 

µ = coefficient of internal friction 

ϕ = friction angle β = failure angle 



Shear failure 

The Mohr-Coulomb criterion 

β = failure angle 



Shear failure 

The Mohr-Coulomb criterion (in terms of principal stresses): 

C0 = uniaxial compressive strength 



Shear failure 
The Griffith criterion: 



Compaction failure 

Failure criterion: 

Grain crushing 

Pore collapse 

p* = crushing pressure 

End cap 





Plasticity & Hardening 



Anisotropic failure criterion 

In layered rock, one may 
anticipate reduced cohesion 
(S0w) and friction angle (ϕw) for 
a plane of a given orientation. 
 
Shear failure along the weak 
plane occurs for a range of 
orientations of the plane with 
respect to the stress field. 
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