Bandwidth enhancement: Inverse Q filtering or time-varying Wiener deconvolution?

Mirko van der Baan

University of Alberta, Canada

Inverse Q deconvolution

- Seismic data always suffer from
 - Attenuation ~ Freq-dependent amplitude decay
 - Dispersion ~ Freq-dependent velocities
- Required inverse Q corrections:
 - Amplitudes ~ regeneration of lost energy
 - Phase ~ make zero-phase

Attenuation and dispersion

• Forward propagation of Dirac (spike)

Desired inverse Q corrections

Do reverse propagation of Dirac (spike)?

Inverse Q filtering

- Inverse Q filtering:
 - Replace time sign in any propagation module
- Process implemented via wavefield extrapolation (Hargreaves and Calvert, 1994)
 - Rationale: Migrate arrival to t=0
 - New implementation based on short-time Fourier transform (Van der Baan, Bliss 7, 2011)
 - Sliding window extracts signal
 - Amplitude (attenuation) and/or phase (dispersion) corrections feasible
 - STFT = Faster since less samples involved

Inverse Q filtering

- Practicalities:
 - Forward propagation:
 - Attenuation and dispersion = inherently stable
 - Reversed propagation:
 - Attenuation corrections = unstable (regeneration of energy)
 - Dispersion corrections = inherently stable
 - General approach: include amplitude damping factor => limited energy amplification

Inv Q correction (attenuation + dispersion)

• Phase + unlimited amplitude correction: Unstable

Inv Q correction (dispersion only)

• Phase-only correction: Make zero phase = stable

Inv Q correction (attenuation + dispersion)

Phase + limited amplitude correction: Stable

Inv Q correction (attenuation + dispersion)

Inv Q amplitude corrections: Noise amplification

Inv Q correction (dispersion)

Inv Q phase corrections: No noise amplification

Fundamental concerns

Inv Q amplitude corrections:

•Amplifies all frequencies

- No wavelet bandwidth information
- No natural balance resolution enhancement vs noise amplification
- Bandpass filtering needed after corrections

•Requires Q factor

• Likely nonstationary Q

Suggested combination

(1) Inverse Q filtering for dispersion corrections

- Unconditionally stable
- But does require Q (+/- 33-50%)

(2) Amplitude-only time-varying Wiener filtering

- Whitens data only within passband (= wavelet bandwidth)
- Inherent trade-off signal recovery and noise amplification
- Wavelet estimated via spectral averaging and sliding window

TV Wiener filtering after dispersion correction

• Time-varying Wiener : Little noise amplification

Inv Q correction (attenuation + dispersion)

Inv Q amplitude corrections: Noise amplification

- Original:
 - Marine w known phase issues

- Dispersion-corrected:
 - No noise enhancement
 - More zero-phase (symmetric waveforms)

Data courtesy: Shell

- Dispersion + Wiener:
 - No noise enhancement
 - Bandwidth improvement => Higher resolution

Data courtesy: Shell

= 150

- Ampl + phase inv Q:
 - Best resolution enhancement of few reflectors
 - But strong noise enhancement elsewhere

Data courtesy: Shell

Max ampl multiplication factor = 5.

Q = 150

Conclusions

- Inverse Q filtering:
 - Replace time sign in any propagation module
 - Forward propagation:
 - Attenuation and dispersion = inherently stable
 - Reversed propagation:
 - Attenuation corrections = unstable (recreation of energy)
 - Dispersion corrections = inherently stable

Conclusions

- Alternative:
 - Combine phase-only inverse Q filtering + time-varying Wiener filtering
 - Phase-only inverse Q filtering:
 - Corrects for dispersion (= inherently stable)
 - Nonstationary Wiener filtering
 - Whitens data only within passband (= wavelet bandwidth)
 - Natural balance resolution enhancement vs noise amplification

Acknowledgments

Shell: For permission to show the data

BLind Identification of Seismic Signals (BLISS) is supported by

