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What do we mean with "static" and "dynamic" moduli?

Elastic wave velocities
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Stress and strain measured 
in a rock mechanical test
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Estat  Edyn

Estat < Edyn

In general:

Note:                    is not a constant ratio – it changes with stress! :stat dynE E
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In saturated rocks,

- Static deformation is often drained

- Dynamic moduli are always undrained

Occasionally used definition:

"Static modulus = drained modulus"

"Dynamic modulus" = undrained modulus"
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Alternative definition, also used: 

"Static modulus" = slope of stress-strain curve measured during unloading
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Our definition: 

"Static modulus" = slope of stress-strain curve
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Standard triaxial set-up + acoustics

Stress
Strain
Acoustic wave velocities

Laboratory tests:

Enables simultaneous measurements of
- static moduli (slope of stress-strain curve)
- dynamic moduli (density x velocity2)

Measurements:



Static and dynamic moduli of soft rocks are different.

The difference changes
along the stress path.

Potential causes for the difference
between static and dynamic moduli:

- Strain rate     dispersion
- Length of stress path
- Stress history
- Rock volume involved
- Drainage conditions
- Anisotropy
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First: consider the static modulus measured during initial loading
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We introduce a parameter P, defined as:

P is a measure of the inelastic part of the 
deformation caused by a compressive 
hydrostatic stress increment. 

Dry rock
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Fjær (1999):
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Observations
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PFC3D-simulation
Li & Fjær, 2008
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We introduce a parameter F, defined as:

F is a measure of the inelastic part of the 
deformation caused by a shear stress 
increment. 

Dry rock
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Uniaxial loading test

- elastic 
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E = Static Young’s modulus
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Fjær (1999):
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Observations
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Discussion:   the F - parameter

Since   E  (1 - F)

 when F =1 then E = 0   

 peak stress
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We have a set of equations……

These represent a constitutive model 
for the rock

We may use it to predict rock behavior, 
and thereby derive mechanical properties 
for the rock gP
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Porosity, 
Density, Sonic,  . 
. . .

Constitutive model

Application for logging purposes

Simulates rock mechanical 
test on fictitious core
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Core measurements

… an example:



Static and dynamic moduli of soft rocks are different.

The difference changes
along the stress path.

Potential causes for the difference
between static and dynamic moduli:

- Strain rate     dispersion
- Length of stress path
- Stress history
- Rock volume involved
- Drainage conditions
- Anisotropy
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Potential causes for the difference
between static and dynamic moduli:

- Strain rate
- Length of stress path
- Stress history
- Rock volume involved
- Drainage conditions
- Anisotropy

1. Stress path:

Static modulus = slope of
stress-strain curve:

Dynamic modulus given by 
axial P-wave velocity:
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Potential causes for the difference
between static and dynamic moduli:

- Strain rate
- Length of stress path
- Stress history
- Rock volume involved
- Drainage conditions
- Anisotropy

2. Saturation:

Static modulus: usually drained

Dynamic modulus: undrained

Irrelevant for dry rocks



22

Potential causes for the difference
between static and dynamic moduli:

- Strain rate
- Length of stress path
- Stress history
- Rock volume involved
- Drainage conditions
- Anisotropy

3. Loading direction:

Friction controlled shear sliding
of closed cracks
- the only non-elastic process
active during unloading
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Consider the slope of the
stress-strain curve during 
unloading

Fjær et al. (2011):



Observation:

24

Non-elastic compliance

increases linearly with decreasing stress 
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Linear extrapolation towards the
beginning of the unloading path
provides estimate of behavior for 
vanishing length of stress path
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Potential causes for the difference
between static and dynamic moduli:

- Strain rate
- Length of stress path
- Stress history
- Rock volume involved
- Drainage conditions
- Anisotropy

4. Loading direction:

Linear extrapolation towards the
beginning of the unloading path
provides estimate of behavior for 
vanishing length of stress path
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Strain rate

4 f  

Average strain rate for 
dynamic measurements:

710   = strain amplitude

= frequency55 10  Hzf  

1 110  s   For "static" deformations
6 110  s  

1 Hzf Corresponds to an acoustic wave with

If strain rate is the only cause for the difference
between the static and dynamic moduli, then

static modulus  dynamic modulus at  1 Hz
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Castlegate sandstone
Dry, clay free – presumably no significant dispersion
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Berea sandstone
Dry, 8% clay – possibly some dispersion
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Significant, measurable dispersion, 
decreasing with increasing stress

Fjær et al. (2012):
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Mancos shale
Saturated, with 13% illite/smectite, 5% kaolinite, etc. 
– probably significant dispersion
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Other applications
We measure,

- the axial P-wave velocity

- the axial S-wave velocity

- the axial stress 

- the radial stress

We want

Thomsen’s 

 We have                   ,  we need
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We have seen that the non-elastic compliance
vanish at the turning point on the stress path, 
(the approach is linear during unloading)

- which means: 
static modulus  dynamic modulus
at the turning point
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Example (dry Castlegate sandstone):
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