

Research plans

Sandra Witsker Sissel Grude Anastasiya Tantsereva Olena Silinska Tuhin Bhakta

Seismic Properties of Heavy Oil Reservoirs

Sandra Witsker

Under the supervision of Professor Martin Landrø

2

Aim of Study

5

Time Lapse pressure-saturation discrimination for CO₂ storage at the Snøhvit Field.

Sissel Grude

Under the supervision of Professor Martin Landrø

- Understand CO₂ movement inside the reservoir
- Link timeshift and amplitude changes observed on the time lapse seismic data to pressure and saturation changes by
 - Time lapse seismic AVO analysis
 - Rock physics
 - Finite difference modeling

Geological Setting

Time lapse seismic difference in amplitude, top fruholmen formation.

Amplitude variation

Comparison of seismic diffraction modeling methods

Anastasiya Tantsereva

under the supervision of Professor Bjørn Ursin and the co-supervision of Professor Arkady Aizenberg

Marseille model

Methods

- The tip-wave superposition method (Ayzenberg et al, 2007, 2009)
- The reciprocal plane-wave expansion method (Ursin, 2008)
- The surface integral methods (Ursin and Tygel, 1997)
- Finite element method (cooperation with D. Komatitsch)

Marseille model: results

Full waveform inversion on ocean-bottom cable data.

Olena Silinska

Under the supervision of Professor Børge Arntsen

Future work includes:

- Use 4C ocean-bottom cable data
- Estimate P- and S-velocities simultaneously and also anisotropy parameters
- Extend this method to the 3D case
- Computation efficiency

Life Of Field Seismic (LoFS)/ Permanent 4-D seismic on Ekofisk Chalk Field

Tuhin BHAKTA

Under the supervision of Professor Martin Landrø

Work Flow of PhD Project

The PhD work plan can be divided into three main parts :--

Rock Physics Model for compacting reservoir--- some issues

- Ekofisk field is compacting reservoir i.e. porosity is not constant throughout the reservoir life.
- Ekofisk is a fractured chalk reservoir. Fractures are highly anisotropic in nature.
- Porosity and permeability are not consistent throughout the Ekofisk field.

Thank you!

Acknowledgements

- NFR for financial support to the ROSE and BIGCCS project.
- Sandra thanks Prof. Martin Landrø for supervision and discussions and Statoil for support and providing data.
- Sissel thanksProf. Martin Landrø for supervision, Statoil and their partners Petoro, Total E&P Norge, GDF SUEZ E&P Norge, Hess Norge and RWE Dea Norge for permission to use their Snøhvit data. Bård Osdal for help and information regarding the Snøhvit field, and permission to use his interpretations.
- Anastasiya thanks The Laboratoire de Mecanique et d'Acoustique in Marseille, France for providing laboratory data. Milana Ayzenberg for help with modeling and useful comments.
- Olena thanks Prof. Børge Arntsen for supervision and also Yuriy Tyapkin for invaluable help.
- Tuhin acknowledges Total E&P Norge for the financial support. Tuhin also thanks other Ekofisk partners ConocoPhillips Skandinavia AS, Eni Norge AS, Statoil Petroleum AS and Petoro AS.