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Introduction

Introduction

» Automatically obtaining the background velocities for depth
migration

» Non-linear optimization problem based on Differential
Semblance [Symes and Carazzone, 1991, Shen and Symes, 2008].

» How to obtain a stable RTM Differential Semblance
Optimization algorithm

Weibull & Arntsen Reverse-time migration velocity analysis



Reverse time migration and velocity analysis

Reverse time migration and velocity analysis

Depth migration = Wavefield extrapolation + crosscorrelation
(Claerbout, 1971)

% Receivers
Source o AVAvAS

*

D = Downgoing wave
U = Upgoing wave

uide@

R = Reflectivity
X, = midpoint
h =half offset
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Reverse time migration and velocity analysis

Cross correlation (imaging condition)

In reverse time migration, R is contructed according to the
multi-offset crosscorrelation imaging condition
[Rickett and Sava, 2002]:

R(x,h,z) ZZ U(x +h,z,t,s)D(x —h,z,t,5). (1)

Where s represents the source index, t is the time index, D is
the forward modeled source wavefield, and U is the reflected
wave field, reverse time extrapolated from the receivers.
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Reverse time migration and velocity analysis

Common image point gathers (CIPs)

Example of CIPs output by Reverse time migration:
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Common image point gathers (CIPs)

Example of CIPs output by Reverse time migration:

Wrong velocity
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Reverse time migration and velocity analysis

Common image point gathers (CIPs)

Example of CIPs output by Reverse time migration:

Wrong velocity

0 0 .
E200] = | 200 » MVA uses the information on
£ 400 =—="1 400| the CIPs to find the correct
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Optimization

Differential Semblance
We start by defining our differential semblace misfit function:

DS = % Iho.R||? = ;/dx /dh /dz h?(9:R(x,h.2))%, (2)
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We start by defining our differential semblace misfit function:

DS = % Iho.R||? = ;/dx /dh /dz h?(9:R(x,h.2))%, (2)

» The velocity analysis consists of minimizing equation 2
with respect to the P-wave velocity c(x, z).
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Optimization

Differential Semblance
We start by defining our differential semblace misfit function:

DS = % Iho.R||? = ;/dx /dh /dz h?(9:R(x,h.2))%, (2)

» The velocity analysis consists of minimizing equation 2
with respect to the P-wave velocity c(x, z).

Optimization can be carried out iteratively, at each iteration
yielding a new velocity model:

Ck+1(X,2) = ck(x,2) —aV:DS(x,z)

Where « is the step length and VDS is the gradient of DS with respect to c(x, z).
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Optimization

Gradient Computation

The derivative of equation 2 with respect to velocity c(x, z) can
be efficiently computed through the adjoint state method
[Chavent, 2009].

c3(x,z) ot?
2
_ZZ C(z)%tlZJ (X, Z’t’S)U/(X’Z’t’S)
S t

where U’(x,z,t,s) and D’(x, z,t, s) are adjoint states.

2 2
VeDS(x,2) = -> > = __2 oD (x,z,t,5)D'(x,2,t,s)
s 1
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Optimization

Gradient Computation (2)

Introducing the Green’s function:

( 1 ‘92+V2)g(x,z,t;x’,z’,t’):é(x—x’)5(z—z’)&(t—t’),

c?(x,z) ot
D’ and U’ are then found to be the solutions of two simulations:
D'(x,z,t,8)=[dx’ [ dz’ g(x,z,0:,z",t)«( [ dh h?BZR(x++h,h,z)U(x'+2h,z’ t,s)),
U’(x,z,t,8)=fdx’ [ dz’ g(x,z,t;x’,z/,o)*(f dh hzazzR(x/—h,h,z’)D(x’—Zh,z’,t,s))7

where * denotes time convolution.
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Optimization

Gradient Computation (3)

A step by step procedure to compute the gradient follows:

1. Construct R, and at the same time store the direct states U
and D for each shot.
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Optimization

Gradient Computation (3)

A step by step procedure to compute the gradient follows:

1. Construct R, and at the same time store the direct states U
and D for each shot.

2. Perform the two simulations for each shot to compute the
adjoint states D’ and U’, and at each time step
crosscorrelate, respectively, with the D and U to build the
source and receiver parts of the gradient.
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Optimization

Gradient Computation (3)

A step by step procedure to compute the gradient follows:
1. Construct R, and at the same time store the direct states U
and D for each shot.

2. Perform the two simulations for each shot to compute the
adjoint states D’ and U’, and at each time step
crosscorrelate, respectively, with the D and U to build the
source and receiver parts of the gradient.

3. Stack the source and receiver parts of the gradient over all
shots to obtain the full gradient.
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Numerical results

2D Shallow lens model
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Numerical results

2D Shallow lens model
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Numerical results

Migration
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Numerical results

Optimization

Vp after 25 iterations
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Numerical results

Optimization
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2D Gullfaks model
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Numerical results

2D Gullfaks model
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Numerical results

Migration
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Numerical results

Optimization

Vp after 25 iterations
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Numerical results

Optimization
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Numerical results
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Numerical results
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