Reverse-time migration velocity analysis

Wiktor Weibull and Børge Arntsen

Department of Petroleum Engineering and Applied Geophysics, NTNU

Rose Meeting, 3rd May 2011

Outline

Introduction

Reverse time migration and velocity analysis

Optimization

Numerical results

References

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

Reverse time migration and velocity analysis

Optimization

Numerical results

References

・ロ と く 厚 と く 思 と く 思 と

Outline

Introduction

Reverse time migration and velocity analysis

Optimization

Numerical results

References

・ロ と く 厚 と く 思 と く 思 と

Outline

Introduction

Reverse time migration and velocity analysis

Optimization

Numerical results

References

・ロ と く 厚 と く 思 と く 思 と

Outline

Introduction

Reverse time migration and velocity analysis

Optimization

Numerical results

References

・ロ と く 厚 と く 思 と く 思 と

Introduction

Automatically obtaining the background velocities for depth migration

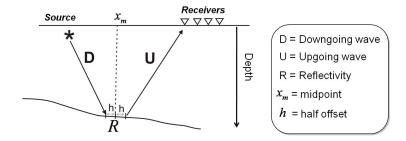
- Non-linear optimization problem based on Differential Semblance [Symes and Carazzone, 1991, Shen and Symes, 2008].
- How to obtain a stable RTM Differential Semblance Optimization algorithm

ヘロト ヘアト ヘビト ヘビト

Introduction

- Automatically obtaining the background velocities for depth migration
- Non-linear optimization problem based on Differential Semblance [Symes and Carazzone, 1991, Shen and Symes, 2008].
- How to obtain a stable RTM Differential Semblance Optimization algorithm

ヘロト ヘ戸ト ヘヨト ヘヨト


Introduction

- Automatically obtaining the background velocities for depth migration
- Non-linear optimization problem based on Differential Semblance [Symes and Carazzone, 1991, Shen and Symes, 2008].
- How to obtain a stable RTM Differential Semblance Optimization algorithm

ヘロト ヘ戸ト ヘヨト ヘヨト

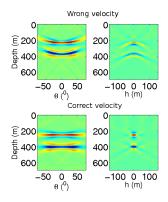
Reverse time migration and velocity analysis

Depth migration = Wavefield extrapolation + crosscorrelation (Claerbout, 1971)

→ Ξ → < Ξ →</p>

Cross correlation (imaging condition)

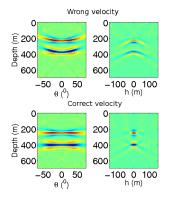
In reverse time migration, *R* is contructed according to the multi-offset crosscorrelation *imaging condition* [Rickett and Sava, 2002]:


$$R(x,h,z) = \sum_{s} \sum_{t} U(x+h,z,t,s)D(x-h,z,t,s).$$
(1)

Where s represents the source index, t is the time index, D is the forward modeled source wavefield, and U is the reflected wave field, reverse time extrapolated from the receivers.

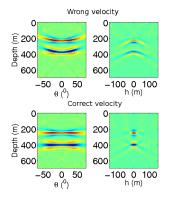
- 4 同 2 4 回 2 4 回 2 4

Common image point gathers (CIPs)


Example of CIPs output by Reverse time migration:

3

Common image point gathers (CIPs)


Example of CIPs output by Reverse time migration:

 MVA uses the information on the CIPs to find the correct slowness.

Common image point gathers (CIPs)

Example of CIPs output by Reverse time migration:

- MVA uses the information on the CIPs to find the correct slowness.
- Improved slowness flattens the angle domain CIPs and focuses the offset domain CIPs.

Differential Semblance

We start by defining our differential semblace misfit function:

$$DS = \frac{1}{2} \|h\partial_z R\|^2 = \frac{1}{2} \int dx \int dh \int dz h^2 (\partial_z R(x, h, z))^2, \quad (2)$$

ヘロト ヘアト ヘビト ヘビト

Differential Semblance

We start by defining our differential semblace misfit function:

$$DS = \frac{1}{2} \|h\partial_z R\|^2 = \frac{1}{2} \int dx \int dh \int dz h^2 (\partial_z R(x, h, z))^2, \quad (2)$$

The velocity analysis consists of minimizing equation 2 with respect to the P-wave velocity c(x, z).

イロト イ押ト イヨト イヨト

Differential Semblance

We start by defining our differential semblace misfit function:

$$DS = \frac{1}{2} \|h\partial_z R\|^2 = \frac{1}{2} \int dx \int dh \int dz h^2 (\partial_z R(x, h, z))^2, \quad (2)$$

The velocity analysis consists of minimizing equation 2 with respect to the P-wave velocity c(x, z).

Optimization can be carried out iteratively, at each iteration yielding a new velocity model:

$$c_{k+1}(x,z) = c_k(x,z) - \alpha \nabla_c DS(x,z)$$

Where α is the step length and $\nabla_c DS$ is the gradient of DS with respect to c(x, z).

ヘロト ヘ帰 ト ヘヨト ヘヨト

Gradient Computation

The derivative of equation 2 with respect to velocity c(x, z) can be efficiently computed through the adjoint state method [Chavent, 2009].

$$\nabla_{c}DS(x,z) = -\sum_{s}\sum_{t} \frac{2}{c^{3}(x,z)} \frac{\partial^{2}D}{\partial t^{2}}(x,z,t,s)D'(x,z,t,s)$$
$$-\sum_{s}\sum_{t} \frac{2}{c^{3}(x,z)} \frac{\partial^{2}U}{\partial t^{2}}(x,z,t,s)U'(x,z,t,s)$$

where U'(x, z, t, s) and D'(x, z, t, s) are adjoint states.

ヘロト ヘアト ヘビト ヘビト

Gradient Computation (2)

Introducing the Green's function:

$$\left(\frac{1}{c^2(x,z)}\frac{\partial^2}{\partial t^2}+\nabla^2\right)g(x,z,t;x',z',t')=\delta(x-x')\delta(z-z')\delta(t-t'),$$

D' and U' are then found to be the solutions of two simulations:

$$D'(x,z,t,s) = \int dx' \int dz' g(x,z,0;x',z',t) * \left(\int dh \ h^2 \partial_z^2 R(x'+h,h,z') U(x'+2h,z',t,s) \right),$$

$$U'(x,z,t,s) = \int dx' \int dz' g(x,z,t;x',z',0) * (\int dh h^2 \partial_z^2 R(x'-h,h,z') D(x'-2h,z',t,s)),$$

where * denotes time convolution.

ヘロト ヘアト ヘビト ヘビト

Gradient Computation (3)

A step by step procedure to compute the gradient follows:

1. Construct *R*, and at the same time store the direct states *U* and *D* for each shot.

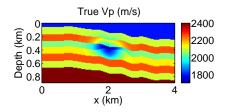
イロト イ押ト イヨト イヨト

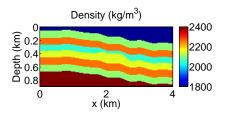
Gradient Computation (3)

A step by step procedure to compute the gradient follows:

- 1. Construct *R*, and at the same time store the direct states *U* and *D* for each shot.
- Perform the two simulations for each shot to compute the adjoint states D' and U', and at each time step crosscorrelate, respectively, with the D and U to build the source and receiver parts of the gradient.

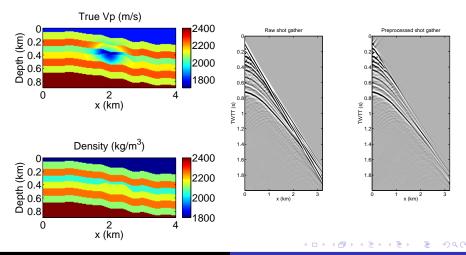
- 4 同 2 4 回 2 4 回 2 4

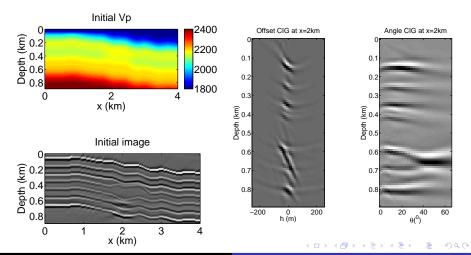

Gradient Computation (3)


A step by step procedure to compute the gradient follows:

- 1. Construct *R*, and at the same time store the direct states *U* and *D* for each shot.
- Perform the two simulations for each shot to compute the adjoint states D' and U', and at each time step crosscorrelate, respectively, with the D and U to build the source and receiver parts of the gradient.
- 3. Stack the source and receiver parts of the gradient over all shots to obtain the full gradient.

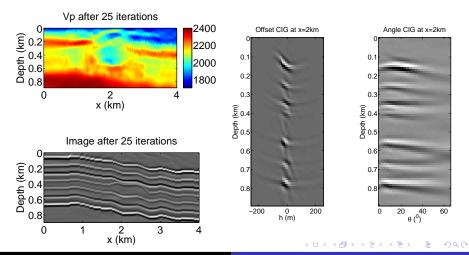
・ 同 ト ・ ヨ ト ・ ヨ ト


2D Shallow lens model

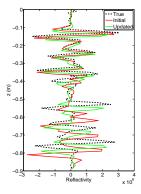


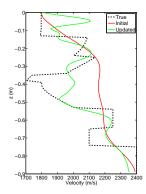
< ∃→

2D Shallow lens model

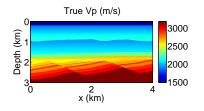


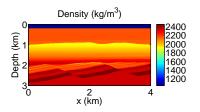
Migration


Weibull & Arntsen


Optimization

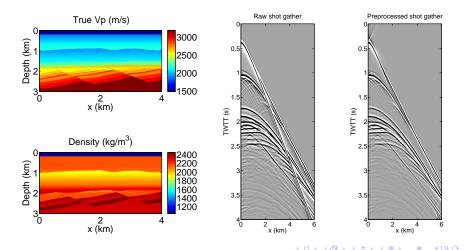
Weibull & Arntsen

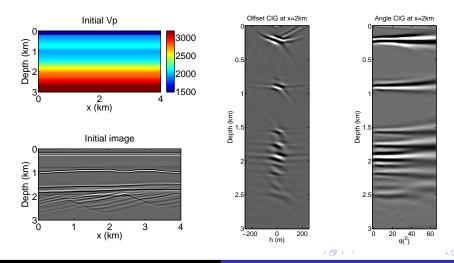

Optimization



ヘロト 人間 とくほとう ほとう

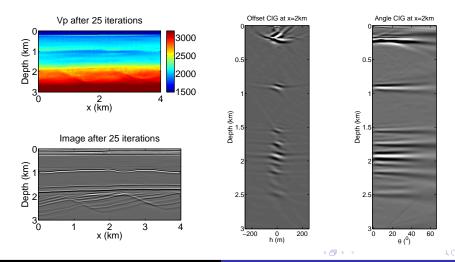
2D Gullfaks model




A D > A P

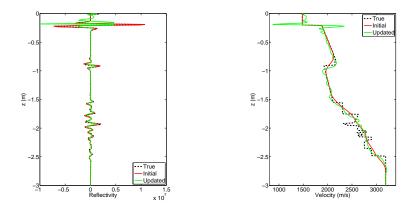
코 에 제 코 어

2D Gullfaks model

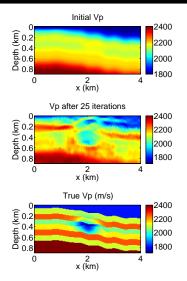

Migration

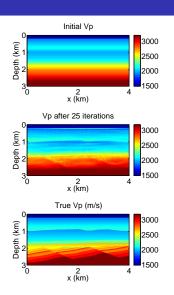
Weibull & Arntsen Revers

Reverse-time migration velocity analysis


Optimization

Weibull & Arntsen Reverse-time migra


Reverse-time migration velocity analysis


Optimization

▶ < ≣ ▶

э.

< 同

< ∃→

Acknowledgements

We acknowledge the sponsors of the Rose Consortium and Statoil for financing this research.

References

Claerbout, J., F., 1971, Toward a unified theory of reflector mapping: Geophysics 36, 467-481.

Nocedal, J., and S. J. Wright, 2000, Numerical optimization: Springer.

Rickett, J., and Sava, P., 2002. Offset and angle domain common-image-point gathers for shot profile migration: Geophysics, 67, 883-889.

Sava, P., and B. Biondi, 2004a, Wave-equation migration velocity analysis. I. Theory: Geophysical Prospecting, 52, 593-606.

---, 2004b, Wave-equation migration velocity analysis. II: Subsalt imaging examples: Geophysical Prospecting, 52, 231.

Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, 49-59.

Symes, W. W., and J. J. Carazzone, 1991, Velocity inversion by differential semblance optimization: Geophysics, 5,

654-663.

- Chavent, G., 2009, Nonlinear least squares for inverse problems. Theoretical foundations and step by step guide for applications: Springer.
- Rickett, J. E., and P. C. Sava, 2002, Offset and angle-domain common image-point gathers for shot-profile migration: Geophysics, 67, 883–889.
- Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, **73**, 49–59.
- Symes, W. W., and J. J. Carazzone, 1991, Velocity inversion by differential semblance optimization: Geophysics, 5, 654–663.

