Synthetic Rock Mass modeling for determination of geomechanical properties reservoir rock masses

Nicholas Thompson Postdoctoral researcher Department of Petroleum Engineering and Applied Geophysics Norwegian University of Science and Technology

Outline:

Rock mass heterogeneity and scale effects

 DEM/Synthetic Rock Mass modeling approach

- Example – Effect on reservoir compaction

Discussion of on-going work

Rock mass heterogeneity

Image: Helge Langeland/Statoil Archive

Rock mass heterogeneity

-*MDEM* simulation of stress changes due to depletion at the Elgin-Franklin reservoir (North Sea, UK sector)

- Alassi et al. (2010)

Rock mass heterogeneity

Reservoir rock mass

Volume

REV – Representative Elementary Volume

- Discontinuities are commonly present in rock units
- Discontinuities have significant effects on the geomechanical parameters of the rock mass
- Rock mass might be treated as a equivalent continuum at the REV
- These effects should be accounted for in

- Numerical tool for analysis of geomaterials and particulate systems
- Bonded particle assemblies simulate the geomechanical behavior of rock

- Microproperties of bonds calibrated so that the macroresponse of the particle assembly matches that of the material in question

- Smooth Joint contact model -Representation of rock mass discontinuities (smooth interface)

- Discrete fracture network (DFN)

- Run pseudo-laboratory tests
- Determine REV of rock mass in question
- Determine geomechanical parameters

 Observe changes in post-peak behavior

depth

Lak	oor	at	or	/

Size (m)	0.038 × 0.076
Particles	
Particle radii (m)	
UCS (MPa)	14.7
E (GPa)	4.2
ν	0.28
φ	35°

	<u>Laboratory</u>	<u>PFC^{2D} calibration</u>
Size (m)	0.038 × 0.076	0.1×0.2
Particles		367
Particle radii (m)		3e-3 - 4.98e-3
UCS (MPa)	14.7	14.7
E (GPa)	4.2	4.2
ν	0.28	0.28
φ	35°	27.4°

	<u>Laboratory</u>	<u>PFC^{2D} calibration</u>	Large-scale
Size (m)	0.038 × 0.076	0.1×0.2	0.5×1
Particles		367	9197
Particle radii (m)		3e-3 – 4.	98e-3
UCS (MPa)	14.7	14.7	17.7
E (GPa)	4.2	4.2	4.4
ν	0.28	0.28	0.28
φ	35°	27.4°	24°

- Vertical spacing – λ

Palmstrom (2005)

- Vertical spacing – λ RQD = 100e^{-0.1 λ}(0.1 λ + 1) Priest and Hudson (1975)

RQD Range (%)	Qualitativ e descriptio n	Selected RQD	Equivalen t spacing (m)
0-25	Very poor	12.5	0.028
25-50	Poor	37.5	0.047
50-75	Fair	62.5	0.077
75-90	Good	82.5	0.133
90-100	Excellent	95	0.282

- Horizontal spacing Fracture Spacing Index (FSI) Narr and Suppe (1991)

- FSI = 1.3 (Range 0.5-1.5)

- FSI = 0.5, 1, 1.5 to create DFNs

- Horizontal spacing Fracture Spacing Index (FSI) Narr and Suppe (1991)

- Discontinuity properties:
 - $k_{N} = 100 \text{ GPa/m}$
 - $k_s = 50 \text{ GPa/m}$
 - $\mu = 0.6$
 - cohesion = dilation = 0

- Decreasing strength/stiffness with decreasing rock mass quality
- Best case (RQD = 100%)
- Worst case (RQD = 12.5%)

- *MDEM*,10 MPa

depletion

- Stress arching

- Limitations to example presented:
 - 2D
 - REV not considered
 - Discontinuity properties
 - Idealized fracture network

On-going work

- 3D

- Determine REV

- Discontinuity property calibration

On-going work

- Key questions:

1) How is REV dependent o variations in bed height an fracture spacing?

2) Degree of change in geomechanical parameters at REV?

3) How do the results match with analytical solutions?

On-going work

- Key questions:

4) Post-peak behavior

Thank you!

Acknowledgements

- ROSE project partners
- Rune Holt, Idar Larsen, Haitham Alassi (SINTEF), Diego Mas Ivars (Itasca), Ian Clark (GeoNet)