Using site survey data to monitor shallow subsurface leakage

by Martin Landrø

EAGE/SPE workshop in Istanbul, April 2011

The NPD's Fact-pages

Wellbore history - 2/4-14

At 4734 m the well kicked, and gained a total 6.5 m3. The well was shut in and several attempts were made to gain control, without success. Finally, as the drill pipe started to come out of the hole, the shear-rams were activated and the drill pipe was cut on 20 January 1989. The well now developed into an underground blow out.

A relief well was drilled 1182 m south of the 14-well:

Well 15 was spudded 31 January 1989, 11 days after the kick – this well was sucessful and stopped the blow out

All information on the well operations is public domain

Recorded wellhead pressure as a function of time

3 different leakage paths for different periods after the blow out

Ref.: Arild Remen, 1991

Noise log measured in May 1989 in the relief well

Source: C. Slungaard, 1991

Noise logs recorded in the blowing well (14)

9th December 1989: Some gas bubbles observed at the 2/4-13 well (47 m away from the blowing well)

Bubble counting showed no changes in rate => indicate that this is probably natural gas

Repeated 2D lines acquired in 2009

In this study we will use brute stacks from 602 and 804

Comparing gamma-logs for two wells (880 m apart)

GR 2/4-13 GR 2/4-16

Surprise: 16-well (1991) showed no gas in the 450 and 840 sand layers!

Brute stacks – line 804

Less pulldown in 2009 – slight increase in horizontal extention

AVO example: Line 804 CDP 1550

4D difference – line 804 1988-1990 after global scaling

4D difference – line 804 1990-2009 after global scaling

804: The 4D anomaly at 640 ms: A significant time shift

804: 4D anomalies caused by timeshifts => lateral gas migration above

804: Slight amplitude increase for the 520-ms event in this area – indicating lateral gas migration 3.5 km NW of the 2/4-14-well

Detailed shallow comparison – line 804

Potential local accumulation of gas (1990-2009) – and corresponding time shift (estimated from an interface below the anomaly) – line 804

345 m

Brute stacks – line 602

Increased lateral extension in 2009

602: Amplitude dimming close to well, slight increase away from well

4D difference – line 602, 1990-2009 after global scaling

602: Amplitude dimming close to well, slight increase away from well

The 490 sand layer: Interpreted horizontal gas migration between 1990 and 2009 based on lines 804 and 602

Timeshifts between 2009 and 1990 – line 804

Indicating less gas around well – more gas to both sides

Comparing 3 different crosscorrelation windows – line 804, 1990-2009

Timeshifts between 2009 and 1990 – line 602

Indicating more gas around well 15 and to the projection of 14

4D time shifts versus CMP and offset

Reflector used for time shift analysis

Colorcoded time shifts as function of offset and CMP

4D tomographic inversion

PhD work of Andreas Evensen

Velocity changes in km/s => \sim 25 m/s

Time-lapse tomographic inversion using a Gaussian parameterization of the velocity changes

Geophysics, 2010, **75**, U29-U38 Andreas Kjelsrud Evensen¹ and Martin Landrø¹

Real time-shifts

Time-shifts of inversion result

Residual time-shifts

Views for discussion

- Repeated site survey data has good resolution and can be used to detect gas leakage in thin layers (less than 10 m) – restricted to shallow (less than ~1-2 km)
- Site surveys are MUCH cheaper than 3D and should therefore be a part of the monitor plan for problem wells
- Vertical migration close to well paths: Less gas close the blowing well in 2009 and more gas close to the relief well – lateral movement of gas
- Preliminary comparison between 4D seismic and fluid flow simulations show good agreement
- Unique dataset that is useful as a proxy for evaluating potential leakage scenarios from CO2-storage

Acknowledgments

- Statoil and Total for permission to use the data
- Dag O. Larsen for providing material from his 1991 SEG presentation
- Hans Rønnevik and Kristian Kolbjørnsen for discussions
- Jon A. Haugen for data processing
- The LOSEM-consortium partners: BayernGas, BP, Det Norske, Lundin Norway, NPD, Statoil and Total
- The Norwegian Research Council for financial support to the ROSE project at NTNU

Real data inversion results for time-shifts picked on horizon at 900ms.

Initial estimate

Inversion result

Real time-shifts

Time-shifts of inversion result

Residual time-shifts

Proxy for CO₂?

- Seismic velocities are similar
- Relative permeability curves are similar
- There are differences, however, this dataset can be used to study long term migration of gas through shallow sediments, and this is obviously of interest to study leakage scenarios from a CO2 storage site