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Why Shale & Clay

J Seismic overburden response
v' 4D response to reservoir depletion or inflation
v’ Shallow sediments

J Top seal integrity

v Fault reactivation or initation due to reservoir depletion or
Inflation

L Source & Reservoir rock
v Finding hydrocarbons
v Gas shale
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What is Shale?

Shale 1s a fine-grained sedimentary rock whose original
constituents were clays or muds. It is characterized by thin
[amiagihekgbtagvivib sekiteprdagteneying fracture, often
splintery and usually parallel to the often-indistinguishable '
bedding plane. This property is called fissility. WIFKIEEEPPEﬁ

J From rock mechanics perspective,
clay minerals should constitute
the load-bearing framework

= U Shales have nanometer pore sizes
& nanoDarcy permeability

s WS ge= == Ul Surface area is large, and water is
 From Swan et aL, 1989 adsorbed on surfaces |/ bound
Inside clay platelets
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Shaly challenges

' Time-consuming tests
3 Shale core quality
 Saturation control

> Use of compacted clay avoids some of these obstacles

J Focus here: Lithological vs. Stress-Induced Anisotropy

Based on Paper by Holt et al. In The Leading Edge (March 2011)
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Laboratory set-up

Triaxial cell

U Multi-directional ultrasonic (0.2 — 0.5 MHz) P- & S-wave
measurements

0 1" diameter, 50-75 mm sample length

0 Axial & radial stress & strain control & measurements
¢ 2 LVDTs for axial strain + Chain for radial strain

U Pore pressure & Temperature

Oedometer cell

0 Axial P- & S- + Radial P-wave ultrasonic (1-2 MHz)
measurements

0 70 mm diameter, 22-25 mm sample thickness

I Axial stress & strain control & measurements
* 3 LVDTs for axial strain

0 Pore pressure
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Old shale data...

P-Wave Anisotropy € [-]
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Oedometric loading of clay & sand-
clay mixtures
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Anisotropy vs. Kaolinite content
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Old shale data again...

% Trend:

040 - Increased P-wave anisotropy with
increasing Kaolinite content

" “*But:

Still scatter...
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Old shale data again...
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Shale Response to reservoir
depletion or inflation:

V o YOS PRI R

0.0100
Effective stress change [MPa] , re S S a 0-0096 500+

-5 0 5 0.0090
‘ 0.0084
0.0078
0.0072
0.0066
0.0060
0.0054
0.0048
0.0042
0.0036
0.0030
0.0024
Mean 0.0018

e s oot
s - | | |
% i 10,0000 3000

| I |
500 1000 1500 2000

500

1000

*
Vertical  {
*

. 1500 A @ Horizontal

2500 Harizontal position [m]

Close to Constant Volume & Pure shear loading

Based on Geertsma model (linear elastic, no contrast reservoir vs. overburden)

In addition: Undrained pore pressure response in overburden
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Experiments in triaxial set-up

Stresses & Pore Pressure [MPa]
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Kaolinite
test

K, (Uniaxial Compaction) + Hydrostatic loading — unloading — reloading +

@ NTNU

Constant Mean Stress w/ reversal
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Compacted Kaolinite with NaCl Brine

N Manufacturing procedure: Velocities @ ISS
D Precompaction to 3 MPa axial stress in (6,223, 6,= 20, p=10 MPa):
Stress (ISS) :
celected as anoedometer, followed by step-wise Test T_01 T_02
loading to ISS in triaxial set-up. v. 21302184
23 MPa b
(vertical) Vp, 2269 2336
20 MPa | vy, 787 781
(horizontal)
10 MPa (pore Vs 912 916
pressure) €y, 0.067 0.072
- Yo 0.171 0.188
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Stress Path Dependent Velocities

P-Wave \Velodgties[nyY's
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VAUAVL VUIVUILY WilkiiyL [11nJ]
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Axial P-Wave velocity in Undrained
Constant Mean Stress con-"*~=-~
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O Axial P-wave velocity shows:
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Slow-down during unloading (simulated
response to depletion)

Eventually also slow-down associated with
loading (simulated response to injection)

Hysteresis reflects pore pressure evolution

From BIGCCS Project
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Stress Path Dependent Anisotropy

P- & SWave Anisotropy € & [-]
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Stress Induced Anisotropy
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Stress Path Dependent Anisotropy

Kaolinite + Sand (50-50)

o
=

0.08 - OOOQ@§§\

0
| =]
2
S 006 ....'
' &
&
0.04 - Y ogg@@@g \
A COge &Y
: oo £
5 0.02 - ¢
: R A ¢
e o
A , A & /
é 0 L4 C
b & R
& 002 - Q .
d e
-0.04 o
0 2 4 6 8 10 *
&

Notice: Anisotropy decrease during K,
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Stress Induced Anisotropy

0.1 1 Constant Mean Stress test with

N Kaolinite + Sand (50-50)
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Stress Path Dependent Anisotropy

Ottawa sand
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Stress Induced Anisotropy
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In Situ Stress Path test with Field Shale Core
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d  Axial P-wave slow down during axial unloading (simulating reservoir depletion)
[ Pore pressure increase with shear loading, causing velocity hysteresis during axial reloading
O Behaviour resemblant of compacting clay
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Stress Induced Anisotropy
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Introduced by Colin Sayers
Anisotropy cross plot |(E¢2009

** Large /e ratio implies
well aligned clay minerals &
large shear : normal

08 - compliance ratio
“* According to Sayers’
" . model, one would expect 0<0
06 - ® . . in such a case
**, RN / . . 1
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Conclusions

* Compacted brine-saturated clays and sands show anisotropy reflecting
mineralogy, stress field and depositional environment.

— Kaolinite appears to form anisotropic texture at very low stress
— Smectite needs more loading for alignment of the minerals to take place

* Evolution of anisotropy depends on stress and on stress path.

— Constant mean stress path => stress-induced velocity anisotropy closely reflects the
change in stress anisotropy

— Close to failure, velocities propagated or polarized along the minor principal stress
direction drop significantly => rapidly changing anisotropy with stress

— S-wave anisotropy was found more stress sensitive than P-wave anisotropy

— ¥>> gindicates compliant shear behavior of mineral contacts, and a high degree of
mineral alignment

— Need ...

* Stress dependence is strongly reduced with presence of cemented grain
contacts
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Laboratory experiment with synthetic
sandctnnea remantad 11Inger ctrece

207 . Notice:
Virgin
Material > Low stress
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::_J 0.60
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Effective vertical stress (MPa)

Nes, Holt, Fjeer & others, many years ago
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