

Shales and Clays: Velocities and Velocity Anisotropy – Dependence on Stress and Lithology

Rune M Holt^{1,2}, Mohammad H Bhuiyan¹, Morten I Kolstø¹, Audun Bakk², Jørn F Stenebråten² & Erling Fjær^{2,1}

¹NTNU Norwegian University of Science and Technology & ²SINTEF Petroleum Research Trondheim, Norway

ROSE Seminar, NTNU 2 May 2011

Why Shale & Clay

Geismic overburden response

- ✓ 4D response to reservoir depletion or inflation
- ✓ Shallow sediments
- □ Top seal integrity
 - ✓ Fault reactivation or initation due to reservoir depletion or inflation
- Source & Reservoir rock
 - ✓ Finding hydrocarbons
 - ✓ Gas shale

What is Shale?

Shale is a fine-grained sedimentary rock whose original constituents were clays or muds. It is characterized by thin **htminaphraphics/kipesulashene**ying fracture, often splintery and usually parallel to the often-indistinguishable bedding plane. This property is called fissility.

From Swan et al., 1989

- From rock mechanics perspective, clay minerals should constitute the load-bearing framework
- Shales have nanometer pore sizes & nanoDarcy permeability
- Surface area is large, and water is adsorbed on surfaces / bound inside clay platelets

Shaly challenges

- □ Time-consuming tests
- Shale core quality
- Saturation control

 \succ Use of compacted clay avoids some of these obstacles

□ Focus here: Lithological vs. Stress-Induced Anisotropy

Based on Paper by Holt et al. In The Leading Edge (March 2011)

Laboratory set-up

Triaxial cell

- Multi-directional ultrasonic (0.2 0.5 MHz) P- & S-wave measurements
- 1 ¹/₂" diameter, 50-75 mm sample length
- Axial & radial stress & strain control & measurements
 - 2 LVDTs for axial strain + Chain for radial strain
- Pore pressure & Temperature

Oedometer cell

- Axial P- & S- + Radial P-wave ultrasonic (1-2 MHz) measurements
- ¹70 mm diameter, 22-25 mm sample thickness
- Axial stress & strain control & measurements
 3 LVDTs for axial strain
- Pore pressure

Old shale data...

Oedometric loading of clay & sandclay mixtures

- Kaolinitic samples: Anisotropy installed at low stress, decreasing
- with increasing stress
 Smectite: Anisotropy evolves
 during compaction
 Sand: Stress-induced (eventually
 negative) anisotropy is dominant

NTNU

Data from Bhuiyan (MSc Thesis) & Kolstø (Ph. D. work)

Anisotropy vs. Kaolinite content

Measured at 8 MPa net axial stress

NTNU

Effect of unloading

 ¹⁰ Reduced stress sensitivity of wave velocities during unloading Built-in anisotropy prevails in clay containing samples

Old shale data again...

Old shale data again...

NTN

Based on Geertsma model (linear elastic, no contrast reservoir *vs*. overburden) In addition: Undrained pore pressure response in overburden

Experiments in triaxial set-up

K₀ (Uniaxial Compaction) + Hydrostatic loading – unloading – reloading + Constant Mean Stress w/ reversal

Compacted Kaolinite with NaCl Brine

"In Situ" Stress (ISS) selected as 23 MPa (vertical) 20 MPa (horizontal) 10 MPa (pore

pressure)

INT'N

Manufacturing procedure: Precompaction to 3 MPa axial stress in anoedometer, followed by step-wise loading to ISS in triaxial set-up.

Velocities @ ISS $(\sigma_r = 23, \sigma_r = 20, p_f = 10 \text{ MPa}):$ Test T_01 T_02 v_{Pz} 2130 2184 v_{Pr} 2269 2336 v_{sz} 787 781 v_{sr} 912 916 ε_{Th} 0.067 0.072 $\gamma_{Th} 0.171 0.188$

Stress Path Dependent Velocities

Axial P-Wave velocity in Undrained Constant Mean Stress conditions

Axial P-wave velocity shows:

- Slow-down during unloading (simulated response to depletion)
- Eventually also slow-down associated with loading (simulated response to injection)
- Hysteresis reflects pore pressure evolution

() SINTEF

Kaolinite

From **BIGCCS** Project

Stress Path Dependent Anisotropy

Stress Induced Anisotropy

Stress Path Dependent Anisotropy

Notice: Anisotropy decrease during K₀ loading – result of sand grains carrying load

SINTEF

Stress Induced Anisotropy

Stress Path Dependent Anisotropy

Ottawa sand

Stress Induced Anisotropy

() SINTEF

In Situ Stress Path test with Field Shale Core

- Axial P-wave slow down during axial unloading (simulating reservoir depletion)
- Pore pressure increase with shear loading, causing velocity hysteresis during axial reloading
- Behaviour resemblant of compacting clay

Stress Induced Anisotropy

Anisotropy cross plot

Introduced by Colin Sayers (SEG 2004) $Large \gamma/\epsilon$ ratio implies well aligned clay minerals & large shear : normal compliance ratio According to Sayers'model, one would expect $\delta < 0$ in such a case $Low \gamma/\epsilon$ ratio may imply incomplete water saturation

Conclusions

- Compacted brine-saturated clays and sands show anisotropy reflecting mineralogy, stress field and depositional environment.
 - Kaolinite appears to form anisotropic texture at very low stress
 - Smectite needs more loading for alignment of the minerals to take place
- Evolution of anisotropy depends on stress and on stress path.
 - Constant mean stress path => stress-induced velocity anisotropy closely reflects the change in stress anisotropy
 - Close to failure, velocities propagated or polarized along the minor principal stress direction drop significantly => rapidly changing anisotropy with stress
 - S-wave anisotropy was found more stress sensitive than P-wave anisotropy
 - $\gamma >> \varepsilon$ indicates compliant shear behavior of mineral contacts, and a high degree of mineral alignment
 - Need δ ...

Stress dependence is strongly reduced with presence of cemented grain contacts

Laboratory experiment with synthetic sandstone cemented under stress

Notice:

≻Low stress sensitivity during loading in the virgin material

Larger stress sensitivity during virgin decompression

Large stress dependence in the simulated core!

Nes, Holt, Fjær & others, many years ago

Acknowledgements

- □ ROSE Program
- □ Some data from BIGCCS and from SINTEF JIP on Rock Physics
- □ Colleagues at SINTEF Formation Physics and IPT

