Velocity and Thickness Estimation of

Thin CO₂ Layers

with Patchy Saturations

Amir Ghaderi, Martin Landrø

Rose Meeting 2011

Outline

Define the problem: thin CO₂ layers

- Why of interest?

The method by Ghaderi-Landrø (2009)

- Outline the method for simultaneous estimation of 4D changes in velocity and thickness with application to real data
- Test on synthetic data
- Show that the method is sensitive to saturation scales, accounting for
 - Patchy and uniform saturation

Layers of CO₂ - 3 years disposal in the Utsira

- CO₂ is injected at the base of the Utsira aquifer in Sleipner
- CO₂ rises due to buoyancy and accumulates under thin shale layers on its way up

The Problem

S_{anomaly}

For the 4D seismic anomaly, we are interested in an estimate of

- thickness: ΔZ
- change in velocity : ΔV
- a quantitative measure of saturation

Estimation of thickness ΔZ , given ΔV

 One simple thickness estimate is based on direct picks and:

$$\Delta z = (t_2 - t_1) \Delta v$$

 Alternative method is using Ghaderi & Landrø (geophysics 2009),

$$\Delta z = -z \frac{v}{\Delta v} \frac{\Delta T}{T}$$

Synthetic test of the proposed methods

Seismic response

RMS amplitude response of the wedge

Wedge model

The comparison of the two methods in estimating ΔZ

Observations

Direct picking on the wedge leads to

- an underestimate for a limited range of thicknesses above the tuning thickness
- For thicknesses below the tuning thickness, it tend to a minimum as the Wedge gets thinner, leading to a gross overestimate.

Ghaderi & Landrø method:

- The result is better by picking traveltime below the event.
- Knowing velocity change, measurements of travel time below the 4D seismic anomaly, can predict the thickness below tuning.

ΔV not known

The main challenge: ΔV is not always known
– Lack of well log, etc.

 Ghaderi & Landrø (2009) propose the use of amplitude information to simultaneously estimate ΔV and ΔZ

Simultaneous estimation of ΔV and ΔZ

Ghaderi & Landrø, Geophysics (2009)

4D amplitude response of a thin layer :

$$S_{d}(f_{0}) = -\frac{\left|P(f_{0})\right|}{v_{1}\cos^{3}\theta} \frac{\Delta T}{T} \times \operatorname{sinc}\left(\frac{\Delta T}{T} \frac{z_{1}2\pi f_{0}}{\Delta v\cos\theta}\right)$$

The corresponding RMS amplitude response

$$S_{d_{-RMS}}^{2} = \int_{f_{t}}^{f_{h}} S_{d}^{2}(\omega) d\omega$$

Measure S_d and $\Delta T \longrightarrow$ Invert for ΔV

Inverting for ΔV (exact : 200 m/s)

Estimated thicknesses from inversion

Back to real data

- Estimates of ΔV and ΔZ
- According to Ghaderi&Landrø

Monitor year	Δv (m/s)	Δz (m)
1999	200	15 (4)
2001	400	15 (8)
2002	500	15 (10)

 Values in parenthesis based on Gassmann and picked timeshifts

So, what is happening?

 This deviation may be due to the patchiness in saturation distribution

Definition: Patchy vs Uniform saturation

Uniform saturation

 Pore pressure can equilibrate over spatial scales less then the L_c during a seismic period

Patchy saturation

- Saturation patches larger than L_c where there is not enough time for wave-induced pore pressure gradient to equilibrate between pore fluid phases during the seismic period
- Characteristic diffusion length (seismic subresolution)

$$L_C = \sqrt{\frac{D}{f}}$$

Some rock physics . . .

- By constraining the pairs, ΔZ and S_{co2} with measured ΔV and ΔZ we can look at various rock physics models:
 - Gassmann-Wood
 - Empirical Brie's relation, calibrated with White's model

P-wave velocity and CO₂ saturation from Nagaoka field, Konishi et al, EAGE 2008

CO₂ distribution under thin shale layers

Influenced by capillary pressure having a decisive role on

- Saturation distribution under shale layers leading to zonations (transition zone)
- Smearing the CO₂ migration tip

Modeling the transition zone

- 4 layer wedge model
- Progressively lower CO₂ saturations further down the model
- ΔV_{avg} = 350 m/s

Inverting for ΔV (average = 350 m/s) Patchy saturation (4 layer model)

NOTE

Increase of RMS amplitude from Nonlayered to layered case by 15%

Estimated thicknesses from inversion Patchy saturation (4 layer model)

Non-Layered

Layered

Source amplitude

- The scaling factor to match the model with data
- Scaling affects the velocity estimation

Source amplitude determination

Conclusion

- An efficient method to estimate velocity and thickness change for thin CO₂ layers (<u>uniform</u> and <u>patchy</u> saturations)
- Further testing on real data is needed

Acknowledgement

- Hossein Mehdi Zadeh
- Alexey Stovas
- Erik Lindeberg
- Mathias Alerini