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Objective

• Model effective elastic properties (e.g. shear rigidity) of a 
random packing of identical spheres with intergrain contact 
friction undergoing either hydrostatic or uniaxial loading 

Sphere assembly



Assumptions – Grain contact model

• Constant porosity or pore volume (~36%)

– Random dense packing configuration 

• Isotropic homogenous spherical grains

– No variation with either position or direction 

• Small strain (grain deformation << grain radius)

• Hydrostatic loading (stress equal in  all directions)

• Mean strain-field

A pair of grains in contact

Sphere assembly



Effective moduli – existing models

ST = 0: Effective shear modulus - ~small contact friction
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ST > 0: Effective shear modulus - ~infinite contact friction

(Digby, 1981, 
Walton, 1987)

Dry sphere assembly

R = grain radius
Cp = coordination number
 = Porosity
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Normal contact stiffness
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Tangential contact stiffness

FT = Tangential force
T = Tangential displacement
 = Contact friction
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FN = Normal force
N = Normal displacement
a = Grain contact radius
G= Grain shear modulus
= Grain Poisson’s ratio

Effective bulk modulus
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Tangential contact stiffness

(Mindlin, 1949)

(Hertz, 1882)



Friction (
Definition

• Friction is the force resisting the relative motion of 
two solid surfaces in contact

– Internal friction is the force resisting motion between elements 
making up a solid while it undergoes deformation
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Contact stiffnesses - New model
A pair of identical grains with arbitrary contact friction 
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Tangential contact stiffness

(Mindlin, 1949)

Schematic diagram
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Normal contact stiffness

Bird view
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Effective moduli – New model

ST = 0: Effective bulk and shear modulus - ~zero contact friction
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ST > 0: Effective shear modulus - infinite contact friction
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Sphere assembly

(Digby, 1981, 
Walton, 1987)

f() [0,1]: Effective shear modulus – arbitrary contact friction
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SN = Normal contact stiffness
ST = Normal contact stiffness 
f() = Mindlin’s friction term
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Model vs. dry core measurements
Loose glass beads (Spherical grains of size = 0.324 mm)
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Model

Differential stress (MPa) Differential stress (MPa)
(Zimmer, 2007)

37.6%          36.2%Porosity range:
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Differential stress (MPa)

Model vs. dry core measurements
Loose sand (angular grains of size = 0.324 mm)
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(Zimmer, 2007)

39.5%          37.2%Porosity range:
Differential stress (MPa)
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Uniaxial strain loading (e3     0, e1=e2=0) 
Definition

’3’3



Directional dependent velocity variation induced by stress differences
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Assumptions – Grain contact model

• Constant porosity or pore volume (~36%)

– Random dense packing configuration 

• Isotropic homogenous spherical grains

– No variation with either position or direction

• Small strain (grain deformation << grain radius)

• Uniaxial strain loading conditions

• Mean strain-field

A pair of grains in contact

Sphere assembly
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GC p

Walton model – infinite contact friction

 = Pore volume or Porosity
 = Grain Poisson’s ratio 
G = Grain shear modulus
3’ = Vertical differential stress
Cp = # grain contact points

Uniaxial strain loading – The sphere assembly is elastically anisotropic

Effective elastic stiffness constants:

where
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(Walton, 1987)
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GC p

Walton model – ~ zero contact friction

 = Pore volume or Porosity
 = Grain Poisson’s ratio 
G = Grain shear modulus
3’ = Vertical differential stress
Cp = # grain contact points

Uniaxial strain loading – The sphere assembly is elastically anisotropic 

Effective elastic stiffness constants:

where

(Walton, 1987)
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New model – Arbitrary contact friction

 = Pore volume or Porosity
R = Grain radius
Cp = # grain contact points
SN = Normal contact stiffness
ST = Tangential contact stiffness
f() = Mindlin’s friction term 

Uniaxial strain loading - Elastic stiffness constants as a function of SN,ST and f()
 

Effective elastic stiffness constants:
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where



Model vs. dry loose sand measurements
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Vertical P-wave velocity:

Horizontal P-wave velocity:  = 45%

 = Pore volume or Porosity
ma = Grain density

      = Vertical P-wave modulus
      = Horizontal P-wave modulus
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Stress-induced velocity anisotropy

Uniaxial strain loading

 = 45%

Uniaxial strain 
loading

P-wave velocity vs. vertical net stress  



New model
Thomsen(1986) anisotropy parameters as function of f() and 

 

  
































μf

2
1

522

μf
2
1

1

C2

CC
γ

dry
44

dry
44

dry
66







   
 

   

    































































μf

2
1

2μf
2
1

148

μf
2
1

4μf
2
1

29

CCC2

CCCC
δ

22

dry
44

dry
33

dry
33

2dry
44

dry
33

2dry
44

dry
13













 

  
































μf

2
1

116

μf
2
1

25

C2

CC
ε

dry
33

dry
33

dry
11






 = Grain Poisson’s ratio 
f() = Mindlin’s friction term 

P-wave anisotropy:

S-wave anisotropy:



Model vs. dry loose sand measurements
Stress- and friction-induced elastic anisotropy
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P-wave anisotropy:
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Conclusions

• The shear modulus is made friction-dependent by use of Mindlin’s friction 
theory  

• As intergrain friction increases
– Larger effective moduli and velocities and lower Vp/Vs
– Stress-sensitivity

• increases for moduli (e.g. dG/d’) and velocities (dV/d’) 
• decreases for the Vp/Vs

• Ultrasonic measurements on sand of angular grains show higher dynamic 
shear rigidity than the perfect slip model – Increasing internal friction due to 
grain interlocking 

• Grain contact conditions are controlling velocities and their stress-
sensitivity in loose sands   
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Conclusions cont’

• Mindlin’s friction theory revisited for uniaxial loading conditions – The 
friction-dependent model predicts
1. instant large negative stress-induced elastic anisotropy (>20%)

2. 20% difference in stress-induced elastic anisotropy between small and infinite 
contact friction

– Extrapolating observation to cemented sandstone -> less stress-induced elastic anisotropy

3. The model is only valid for small stress ratios    ¼

• Ultrasonic measurements on a set of loose sand are in accordance 
with model-predictions
– The sand with angular grains has higher internal friction than that of perfectly smooth 

spheres





Thank you 
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