ROSE Meeting Time Lapse Refraction and Plans for Full Waveform Inversion

Hadi Balhareth (PhD Student) Martin Landrø (Supervisor) NTNU May 2, 2011

0

NTNU
Norwegian University of
Science and Technology

Objectives

 Perform detailed Finite-Difference modeling to investigate the 4D refraction effects caused by shallow gas accumulations.

 Implement full waveform Inversion on field-data to map the expected gas anomalies due to the underground blow-out (well-14).

Outline

1. Background (4D Refraction):

Hossein Mehdi Zadeh, PhD Thesis, NTNU

2. Future Plan

- Modeling: Petrophysical modeling & Finite difference (FD) seismic modeling.
- Processing of Seismic Data
- Full waveform inversion

1. BACKGROUND: 4D REFRACTION A And And Thesis, NTNU

Basic Principal of Head-wave Timeshifts (HWΔT)

(Hossein Mehdi Zadeh, PhD Thesis)

Analysis of synthetic Refraction ΔT

(Hossein Mehdi Zadeh, PhD Thesis)

4D Reflection

4D Reflection Seismic

(Hossein Mehdi Zadeh, PhD Thesis)

Field data observation

⁽Hossein Mehdi Zadeh, PhD Thesis)

Field data observation

Close to well

Far from well

HWΔT relative to well location

2. TOWARDS FULL WAVEFORM INVERSION

- Modeling (Petrophysical & FD seismic)
- Seismic processing

0

Full waveform inversion

Petrophysical Model

First Scenario: Prior to Gas Leakage (100% Brine Saturation)

Second Scenario:

Gas Charging into All sand Layers (Decreased Lateral extend upward)

Third Scenario

Fourth Scenario (Glacial Channels)

2. 2D Finite Difference (FD) Seismic Modeling

 4D Refraction feasibility study (Amplitude & Timeshifts)

3. Seismic Processing

- 1. Refraction-events' oriented processing.
- 2. Standard reflection processing.

4. Refraction Full-Waveform Inversion

Objective: Localized gas-accumulations model

- Depths
- Shape (Lateral & Vertical extent of gas anomaly)

Acknowledgments

- Statoil and Total for permission to use seismic data
- BayernGas, BP, Det Norske, Lundin, Statoil and Total for financial support to the LOSEM-project at NTNU
- CGGVeritas for invitation to perform FWI
- Saudi Aramco for financial support to my PhD studies
- Hossein Mahdi Zadeh, Statoil

Basic principal of head-wave timeshift (HWΔT)

Synthetic modeling of HWΔT

(Fredrik Hansteen et al., 2010): Time-lapse Refraction Seismic Monitoring : SEG Denver 2010 Annual Meeting

Timeshifts vs offset

Underground blow out

(Hossein Mehdi Zadeh, PhD Thesis)

Timeshift vs offset @ anomaly center

(Hossein Mehdi Zadeh, PhD Thesis)

Synthetic modeling of HWΔT

Analysis of synthetic HWΔT

Comparing gamma-logs for two wells (880 m apart)

Surprise: 16-well (1991) showed no gas in the 450 and 840 sand layers!

Conclusions

- Promising alternative to conventional 4D analysis.
- Monitor velocity changes in shallow sedimentary layers.
- Major limitations:
 - Interfaces that create refracted events,
 - Noise.
- North Sea field example:
 - 4D travel time shifts of up to 4 ms for one interpreted refracted event.