### Critical offset analysis of LoFS data from Valhall

Hossein Mehdi Zadeh, Martin Landrø and Olav Inge Barkved

#### Motivation

- Less successful time-lapse stories for stiff-rock reservoirs
- Detect small velocity change

### Critical offset monitoring

Stiff rock reservoir High velocity Critical angle Critical offset

### Basic principles of critical offset

b



90 8

 $V'_2$ 



- Requirements:
  - Increasing velocity with depth
  - Acquiring long offset data

$$\frac{\Delta x_{cp}}{x_{cp}} \approx \frac{1}{1 - n_p^2} \frac{\Delta n_p}{n_p}$$

When  $\Delta V_1=0$ 



# Amplitude change at critical offset



# Amplitude change at critical offset



Maximum amplitude offset is easier to detect 6

### Time-lapse properties of Хм



#### Synthetic modelling

ρ



### Amplitude analysis of top



shift in X<sub>M</sub> is mainly controlled by P-wave velocity X<sub>M</sub> is practically independent of S-wave velocity and density

### Thin layer effect



### Synthetic result, Valhall representative



### Valhall LoFS-data



- Chalk reservoir
- High porosity
- 10-60m reservoir thickness

Barkved and Kristiansen 2005

Compacting in the reservoir and stretching in the overburden Reservoir compacts (~8 m) Seafloor subside (~5m) full field permanently-installed 4D OBC, LoFS (Life of Field Seismic), in 2003

### Why LoFS data?

- Velocity increase at top reservoir
- High repeatability
- Max offset = 5000m (over critical offset)
- Overburden noise is not severe



Barkved et al. 2003

### Example of CMP amplitude analysis



## Example of CMP amplitude analysis



It is not easy to find the maxium amplitude offset in every CMP

### Monitoring of Xм



Only negative change in XM =>Negligible change in Underburden?

### Inversion for $\Delta x_{M}$

| P-wave velocity (m/s): |            | LoFS-1   | LoFS-6 | LoFS-8 |
|------------------------|------------|----------|--------|--------|
|                        | Overburden | 2200 m/s | -14%   | -26%   |
|                        | Reservoir  | 2900 m/s | +14%   | +26%   |

Overburden thickness undergoing change= 200m Reservoir thickness =20m

#### Combining conventional 4D with 4D refraction analysis => density estimation

From conventional 4D:

From critical offset 4D:

 $\frac{\Delta AI_{\text{Res}}}{AI_{\text{Res}}} \approx 15\%$   $\frac{\Delta V_{\text{Res}}}{V_{\text{Res}}} \approx 14\%$   $\frac{\Delta \rho_{\text{Res}}}{V_{\text{Res}}} = \frac{\Delta AI_{\text{Res}}}{AI_{\text{Res}}} - \frac{\Delta V_{\text{Res}}}{V_{\text{Res}}} \approx 1\%$ 

### Conclusions

- Method:
  - maximum amplitude offset instead of critical offset monitoring
  - potential to monitor velocity changes in stiff-rock reservoirs
  - pure velocity estimator
  - sensitive to P-wave velocity of reservoir and overburden
  - independent of density and S-wave velocity
  - complementary to conventional 4D
- Maximum amplitude offset is
  - frequency dependent
  - beyond critical offset => long offset acquisition
- In case of a thin layer, underburden velocity becomes important.

### Aknowledgement

- Valhall group (BP Norge, Norske Shell, Amerada Hess and Total E&P Norge).
- Research Council of Norway (NFR).
- Børge Arntsen, Alexey Stovas and Amir Ghaderi