Illumination analysis of wave-equation imaging with "curvelets"

S. Wang, M.V. de Hoop \& B. Ursin

April, 20th, 2010

Purdue University
Norwegian University of Science and Technology

Overview

- background and previous work
- why wave packets ("curvelets")?
localization in both space and time
localized plane wave
- single scattering
- diffraction formulation and partial reconstruction
illumination correction
normal operator correction
via inverse diagonal approximation \longrightarrow partial reconstruction
- numerical examples
- conclusion

I. Background and previous work

- limited acquisition aperture VS. complex geological structure
- subsalt imaging: target-oriented illumination analysis and correction

- Muerdter 2001: Raytracing based subsalt illumination
- Rickett 2003: Illumination-based normalization
- Kühl 2003: Least sqaure wave-equation migration
- Wu 2006: Directional illumination based on beamlets
- Xie 2006: Wave equation based illumination analysis
- Malcolm 2007: Illumination with internal multiples
- Alai 2008: Illumination towards shadow zones
- Symes 2008: Approximate linearized inversion
- de Hoop 2009: Partial reconstruction with "curvelets"
- Cao 2009: Frequency domain directional illumination

II. Why wave packets ("curvelets")?

$$
\hat{\varphi}_{\gamma}(\xi)=\rho_{k}^{-1 / 2} \hat{\chi}_{\nu, k}(\xi) \exp \left[-\mathrm{i}\left\langle x_{j}, \xi\right\rangle\right], \quad \gamma=\left(x_{j}, \nu, k\right)
$$

(de Hoop, Smith, Duchkov, Anderson, Wendt)

- properties of curvelet transform:
analysis C (forward $C T$): $\quad d_{\gamma}=(C d)_{\gamma}$
synthesis C^{T} (inverse CT): $\quad C^{T}\left\{d_{\gamma}\right\}=\sum_{\gamma} d_{\gamma} \varphi_{\gamma}$
recovery: $\quad C^{T} C=1$
projection: $\quad \Pi=C C^{T} \neq I, \quad$ with $\quad \Pi_{\gamma^{\prime} \gamma}=\left\langle\varphi_{\gamma^{\prime}}, \varphi_{\gamma}\right\rangle$
- operator matrix representation: (de Hoop et al. 2009)

Fm
$\mathrm{C}^{T} \mathrm{CF} C^{T} \mathrm{Cm}$
$C^{T}\left[C F C^{T}\right] C m \quad$ where $\quad[F]_{\gamma^{\prime} \gamma}=\left(C F C^{T}\right)_{\gamma^{\prime} \gamma}=\left\langle\varphi_{\gamma^{\prime}}, F \varphi_{\gamma}\right\rangle$

III. Single scattering

- extension operators

$$
\begin{aligned}
E_{1}:\left(c_{0}^{-3} \delta c\right)(z, x) & \mapsto h(z, \bar{x}, x)=\delta(x-\bar{x}) 2\left(c_{0}^{-3} \delta c\right)\left(z, \frac{\bar{x}+x}{2}\right) \\
E_{2}: h(z, \bar{x}, x) & \mapsto R(z, x, \bar{x}, t)=\delta(t) h(z, \bar{x}, x)
\end{aligned}
$$

- single scattering operator (Born approximation)

$$
F: \delta c \mapsto L E_{2} E_{1} 2 c_{0}^{-3} \delta c
$$

with (L: DSR propagator)

$$
\begin{aligned}
& L R(s, r, t)=\int_{\mathbb{R}_{+}}\left\{\int _ { \mathbb { R } ^ { n - 1 } } \int _ { \mathbb { R } ^ { n - 1 } } \int _ { \mathbb { R } } \left(\int_{0}^{t-t_{0}} G\left(0, r, t-t_{0}-\bar{t}_{0}, z, x\right)\right.\right. \\
&\left.\left.G\left(0, s, \bar{t}_{0}, z, \bar{x}\right) \mathrm{d} \bar{t}_{0}\right) R\left(z, x, \bar{x}, t_{0}\right) \mathrm{d} \bar{x} \mathrm{~d} x \mathrm{~d} t_{0}\right\} \mathrm{d} z
\end{aligned}
$$

IV. Diffraction formulation \& partial reconstruction

- normal operator \& normal equation ($\delta c \in \mathbb{R}^{n}, \boldsymbol{d} \in \mathbb{R}^{2 n-1}, 1^{\mathcal{S}}$:acquisition aperture)

$$
F^{*} 1^{\mathcal{S}} F \delta c=F^{*} 1^{\mathcal{S}} d, \quad N=F^{*} 1^{\mathcal{S}} F
$$

IV. Diffraction formulation \& partial reconstruction

- normal operator \& normal equation ($\delta c \in \mathbb{R}^{n}, \boldsymbol{d} \in \mathbb{R}^{2 n-1}, 1^{\mathcal{S}}$:acquisition aperture)

$$
\begin{gathered}
F^{*} 1^{\mathcal{S}} F \delta c=F^{*} 1^{\mathcal{S}} d, \quad N=F^{*} 1^{\mathcal{S}} F \\
\left(E_{1}^{*} E_{2}^{*} L^{*}\right) 1^{\mathcal{S}}\left(L E_{2} E_{1}\right) \delta c=\left(E_{1}^{*} E_{2}^{*} L^{*}\right) 1^{\mathcal{S}} d
\end{gathered}
$$

IV. Diffraction formulation \& partial reconstruction

- normal operator \& normal equation $\left(\delta c \in \mathbb{R}^{n}, d \in \mathbb{R}^{2 n-1}, 1^{\mathcal{S}}:\right.$ acquisition aperture)

$$
\begin{gathered}
F^{*} 1^{\mathcal{S}} F \delta c=F^{*} 1^{\mathcal{S}} d, \quad N=F^{*} 1^{\mathcal{S}} F \\
\left(E_{1}^{*} E_{2}^{*} L^{*}\right) 1^{\mathcal{S}}\left(L E_{2} E_{1}\right) \delta c=\left(E_{1}^{*} E_{2}^{*} L^{*}\right) 1^{\mathcal{S}} d
\end{gathered}
$$

with thin-slab propagation $\left(L=L_{0} L_{m-1}\right)$

$$
\left(E_{1}^{*} E_{2}^{*} L_{m-1}^{*} L_{0}^{*}\right) 1^{\mathcal{S}}\left(L_{0} L_{m-1} E_{2} E_{1}\right) \delta c=\left(E_{1}^{*} E_{2}^{*} L_{m-1}^{*} L_{0}^{*}\right) 1^{\mathcal{S}} \boldsymbol{d}
$$

IV. Diffraction formulation \& partial reconstruction

- normal operator \& normal equation $\left(\delta c \in \mathbb{R}^{n}, d \in \mathbb{R}^{2 n-1}, 1^{\mathcal{S}}:\right.$ acquisition aperture)

$$
\begin{gathered}
F^{*} 1^{\mathcal{S}} F \delta c=F^{*} 1^{\mathcal{S}} d, \quad N=F^{*} 1^{\mathcal{S}} F \\
\left(E_{1}^{*} E_{2}^{*} L^{*}\right) 1^{\mathcal{S}}\left(L E_{2} E_{1}\right) \delta c=\left(E_{1}^{*} E_{2}^{*} L^{*}\right) 1^{\mathcal{S}} d
\end{gathered}
$$

with thin-slab propagation $\left(L=L_{0} L_{m-1}\right)$

$$
\begin{aligned}
& \left(E_{1}^{*} E_{2}^{*} L_{m-1}^{*} L_{0}^{*}\right) 1^{\mathcal{S}}\left(L_{0} L_{m-1} E_{2} E_{1}\right) \delta c=\left(E_{1}^{*} E_{2}^{*} L_{m-1}^{*} L_{0}^{*}\right) 1^{\mathcal{S}} \boldsymbol{d} \\
& (E_{1}^{*} \underbrace{E_{2}^{*} L_{m-1}^{*}}_{K_{m-1}^{*}})\left[L_{0}^{*} 1^{\mathcal{S}} L_{0}\right](\underbrace{L_{m-1} E_{2}}_{K_{m-1}} E_{1}) \delta c=(E_{1}^{*} \underbrace{E_{2}^{*} L_{m-1}^{*}}_{K_{m-1}^{*}})\left[L_{0}^{*} 1^{\mathcal{S}} d\right]
\end{aligned}
$$

illustration: thin-slab propagation and a wave packet

STEP 1. partial "redatuming"

- illumination correction via inverse diagonal approximation
illumination operator: $L_{0}^{*} 1^{\mathcal{S}} L_{0}$
illumination matrix correspondingly: $\left[A^{\mathcal{S}}\left(z_{\bar{m}-1}, z_{m-1}\right)\right]_{\bar{\gamma}^{\prime} \gamma^{\prime}}$

STEP 1. partial "redatuming"

- illumination correction via inverse diagonal approximation
illumination operator: $L_{0}^{*} 1^{\mathcal{S}} L_{0}$
illumination matrix correspondingly: $\left[A^{\mathcal{S}}\left(z_{\bar{m}-1}, z_{m-1}\right)\right]_{\bar{\gamma}^{\prime} \gamma^{\prime}}$
Inverse diagonal approximation: $\mathcal{O}\left(2^{-k / 2}\right)$ (de Hoop et al. 2009)

$$
\widetilde{D}_{\gamma^{\prime}}\left(z_{m-1}\right)^{-1}=\left[A^{\mathcal{S}}\left(z_{m-1}, z_{m-1}\right)\right]_{\gamma^{\prime} \gamma^{\prime}}^{-1} \Pi_{\gamma^{\prime} \gamma^{\prime}}
$$

applying this inverse diagonal on both sides of the normal equation (reaching the top of the thin slab):

$$
\widetilde{D}_{\gamma^{\prime}}\left(z_{m-1}\right)^{-1}\left[L_{0}^{*} 1^{\mathcal{S}} L_{0}\right] d\left(z_{m_{0}-1}\right)=\widetilde{D}_{\gamma^{\prime}}\left(z_{m-1}\right)^{-1}\left[L_{0}^{*} 1^{\mathcal{S}} d\right]
$$

STEP 2: micro-diffraction tomography within the thin slab

- thin-slab normal operator:

$$
\bar{\Xi}_{m-1}=K_{m-1}^{*} 1^{\mathcal{S}\left(z_{m-1}\right)} K_{m-1}
$$

in which $K_{m-1}=L_{m-1} E_{2}$

- inverse diagonal approximation of $\bar{\Xi}_{m-1}$

$$
\left(\widetilde{D}_{\equiv}\right)_{\gamma_{0}}\left(z_{m-1}\right)^{-1}=\left[\bar{\Xi}_{m-1}\right]_{\gamma_{0} \gamma_{0}}^{-1} \Pi_{\gamma_{0} \gamma_{0}}
$$

- partial reconstruction

$$
\begin{aligned}
\widetilde{D} \equiv\left(z_{m_{0}-1}\right)^{-1}\left[K_{m_{0}-1}^{*}\right] \Pi^{\mathcal{S}\left(z_{m_{0}-1}\right)}\left[K_{m_{0}-1}\right]^{\mathcal{C}\left(z_{m_{0}-1}\right)}(h) \\
\quad=\widetilde{D} \equiv\left(z_{m_{0}-1}\right)^{-1}\left[K_{m_{0}-1}^{*}\right] \Pi^{\mathcal{S}\left(z_{m_{0}-1}\right)}\left(d\left(z_{m_{0}-1}\right)\right)
\end{aligned}
$$

illustration: "anatomy" of the normal operator

V. Numerical examples

lens: retrofocusing 1

lens: retrofocusing 2

curvelet coefficients decay exponentially

3D visualization of coefficients decay: $\operatorname{dip}=0$, scatter $=15$

example 2: salt

salt: upward continuation, $\operatorname{dip} 0^{\circ}$, scattering 15°

salt: illumination dip angle response

- source1: $z=2.25 \mathrm{~km}, x=-0.75 \mathrm{~km}$

- source2: $z=2.25 \mathrm{~km}, x=0.5 \mathrm{~km}$

salt: illumination scattering angle response

- source: $z=2.25 \mathrm{~km}, x=0.5 \mathrm{~km}$

VI. Conclusions

- wave-equation based illumination analysis and correction
- wave packets ("curvelets"): localization in both space and time
- inverse diagonal approximation \& partial reconstruction
illumination correction
normal operator correction
- artifacts minimization

Acknowledgements

- N.F.S
- GMIG members: BP, ConocoPhillips, ExxonMobil, StatoilHydro, Total
- VISTA, Norwegian Research Council

