Single-station SVD-based polarization filtering: theoretical and synthetic data investigations

Olena Tiapkina, Martin Landrø and Yuriy Tyapkin

NTNU Trondheim, Norway

Outline

- Introduction
- Description of polarization filter
- Theoretical investigation
- Stochastic simulation of synthetic data
- Conclusions

Everypass filter Noise (ground roll) Signal (reflected waves) Frequency Polarization properties of seismic waves Linearly polarized reflected waves

$$S_{x}(\omega) = k_{x}A(\omega)e^{i\varphi(\omega)}$$
$$S_{y}(\omega) = k_{y}A(\omega)e^{i\varphi(\omega)}$$
$$S_{z}(\omega) = k_{z}A(\omega)e^{i\varphi(\omega)}$$

Elliptically polarized ground roll $R_{x}(\omega) = q_{x}B(\omega)e^{i\psi(\omega)}$ $R_{y}(\omega) = q_{y}B(\omega)e^{i\psi(\omega)}$ $R_{z}(\omega) = q_{z}B(\omega)e^{i\left[\psi(\omega) + \frac{\pi}{2}\right]}$

Ground roll has relatively high energy

Ground roll has relatively low apparent velocity

Matrix forming in a sliding window

Jackson, G.M. et.al, 1991

$$\mathbf{W} = (\mathbf{w}_{x} \ \mathbf{w}_{y} \ \mathbf{w}_{z})$$

$$Dim (\mathbf{W}) = N \times 3$$

$$\mathbf{W} = \mathbf{E}_{1} + \mathbf{E}_{2} + \mathbf{E}_{3} = \sum_{i=1}^{3} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$$

$$without random noise:$$
Elliptical polarization
(ground roll):
rank(\mathbf{W}) = 2
$$\mathbf{W} = \mathbf{E}_{1} + \mathbf{E}_{2}$$

$$\mathbf{W} = \mathbf{E}_{1} + \mathbf{E}_{2}$$

$$\mathbf{W} = \mathbf{E}_{1}$$

 $\begin{array}{ll} \mathbf{E}_1, \, \mathbf{E}_2 \, \text{and} \, \mathbf{E}_3 & \text{eigenimages or principal components} \\ \mathbf{u}_1, \, \mathbf{u}_2 \, \text{and} \, \mathbf{u}_3 & \text{left singular vectors} \\ \mathbf{v}_1, \, \mathbf{v}_2 \, \text{and} \, \mathbf{v}_3 & \text{right singular vectors} \\ \sigma_1, \, \sigma_2 \, \text{and} \, \sigma_3 & \text{singular values} \, (\sigma_1 \! \geq \! \sigma_2 \! \geq \! \sigma_3) \end{array}$

(by Jin and Ronen, 2005)

Filtering

F result of filtering

- W original 3C data
- \mathbf{E}_1 and \mathbf{E}_2 first two eigenimages of low-pass filtered original data

... How much signal energy remains in the third SVD term E3?

Mathematical model of the record

$$\mathbf{W} = (\mathbf{w}_x \ \mathbf{w}_y \ \mathbf{w}_z)$$

with

$$\mathbf{w}_{i} = a_{i}\mathbf{D}_{i}\mathbf{g} + b_{i}\mathbf{s} + \mathbf{n}_{i}$$

$$\mathbf{D}_i = \begin{cases} \mathbf{I}, & i = x, y \\ \mathbf{H}, & i = z \end{cases}$$

- Iidentity operatorHdiscrete Hilbert transform
- a_i and b_i amplitudes of ground roll and signal g and s "forms" of ground roll and signal

$$\|\mathbf{g}\| = \|\mathbf{H}\mathbf{g}\| = \|\mathbf{s}\| = 1$$
$$\|\mathbf{n}_i\| = c^2$$

Cross-correlation matrix

$$\mathbf{R} = \mathbf{W}^{T} \mathbf{W} = \begin{bmatrix} a_{x}^{2} + b_{x}^{2} + c^{2} & a_{x}a_{y} + b_{x}b_{y} & b_{x}b_{z} \\ a_{x}a_{y} + b_{x}b_{y} & a_{y}^{2} + b_{y}^{2} + c^{2} & b_{y}b_{z} \\ b_{x}b_{z} & b_{y}b_{z} & a_{z}^{2} + b_{z}^{2} + c^{2} \end{bmatrix}$$

Characteristic polynomial $|\mathbf{R} - \lambda \mathbf{I}| = 0$

$$\lambda_0 = \lambda - c^2$$

$$\lambda_0^3 + q_2\lambda_0^2 + q_1\lambda_0 + q_0 = 0$$

 q_0, q_1, q_2 are functions of ground roll and signal amplitudes

Cardano's formula: $\lambda_3 = \sigma_3^2 = 2\sqrt{-Q} \cos[(\theta + 2\pi)/3] + A/3 + c^2$

A, Q, θ are functions of ground roll and signal amplitudes

If
$$\alpha = 0$$
, then $\lambda_3 = c^2$

In this case filter subtracts not only ground roll, but also signal.

Signal

If ground roll is much stronger than signal, only an appreciable part of the horizontal signal component perpendicular to vector **a** remains after polarization filtering.

Stochastic simulation of synthetic data

$$\mathbf{w}_i = a_i \mathbf{D}_i \mathbf{g} + b_i \mathbf{s}$$

"Forms" **g** and **s** are independent stochastic processes Random noise is negligible Signal has three components Ground roll has x and z components with fixed ratio of their energies: $\frac{a_z^2}{a_x^2} = 4$

We studied the performance of polarization filtering depending on

(1) ground roll-to-signal energy ratio $e = (a_x^2 + a_z^2)/(b_x^2 + b_y^2 + b_z^2)$ (2) vertical-to-horizontal signal component energy ratio $p = b_z^2/(b_x^2 + b_y^2)$ (3) angle α between vectors **a** and **b**

We consider how much signal energy remains on y component Since P and S waves behave differently, we consider them separately.

P waves

the correlation coefficient with the "pure" signal

Vertical-to-horizontal signal component energy

Y component characteristics after polarisation filtering depending on ground roll-to-signal energy ratio e, vertical-to-horizontal signal component energy ratio p, and angle α between vectors **a** and **b**.

S waves

the correlation coefficient with the "pure" signal

Horizontal-to-vertical signal component energy ratio

Y component characteristics after polarisation filtering depending on ground roll-to-signal energy ratio e, horizontal-to-vertical signal component energy ratio p, and angle α between vectors **a** and **b**.

Conclusions

• Single-station SVD-based polarization filtering has been investigated theoretically and using stochastic simulation of synthetic data

• After filter application, most of signal energy can be preserved only on horizontal component perpendicular to the plane where ground roll propagates

• For P- and SV-wave data, if α is large and horizontal to vertical components energy ratio of signal is large, then application of the filter is favorable.

• For SH-wave data, application of the filter is favorable if ground roll-to-signal energy ratio is rather high.

• Influence of errors in scaling between data components is planned to be investigated

Acknowledgement s

Statoil

•Kenneth Duffaut