Single-station SVD-based polarization filtering: theoretical and synthetic data investigations

Olena Tiapkina, Martin Landrø and Yuriy Tyapkin
NTNU
Trondheim, Norway

Outline

- Introduction
- Description of polarization filter
- Theoretical investigation
- Stochastic simulation of synthetic data
- Conclusions

Frequency

Polarization properties of seismic waves Linearly polarized reflected waves

$$
\begin{aligned}
& S_{\mathrm{x}}(\omega)=k_{\mathrm{x}} A(\omega) e^{i \varphi(\omega)} \\
& S_{\mathrm{y}}(\omega)=k_{\mathrm{y}} A(\omega) e^{i \varphi(\omega)} \\
& S_{\mathrm{z}}(\omega)=k_{\mathrm{z}} A(\omega) e^{i \varphi(\omega)}
\end{aligned}
$$

Elliptically polarized ground roll

$$
\begin{aligned}
& R_{\mathrm{x}}(\omega)=q_{\mathrm{x}} B(\omega) e^{i \psi(\omega)} \\
& R_{\mathrm{y}}(\omega)=q_{\mathrm{y}} B(\omega) e^{i \psi(\omega)} \\
& R_{\mathrm{z}}(\omega)=q_{\mathrm{z}} B(\omega) e^{i\left[\psi(\omega)+\frac{\pi}{2}\right]}
\end{aligned}
$$

Ground roll has relatively high energy

Ground roll has relatively low apparent velocity

Matrix forming in a sliding window

Jackson, G.M. et.al, 1991

$$
\mathbf{W}=\left(\mathbf{w}_{x} \mathbf{w}_{y} \mathbf{w}_{z}\right) \quad \operatorname{Dim}(\mathbf{W})=N \times 3
$$

$$
\mathbf{W}=\mathbf{E}_{1}+\mathbf{E}_{2}+\mathbf{E}_{3}=\sum_{i=1}^{3} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

without random noise:

Elliptical polarization (ground roll):

$$
\operatorname{rank}(\mathbf{W})=2
$$

$$
\mathbf{W}=\mathbf{E}_{1}+\mathbf{E}_{2}
$$

$$
\begin{aligned}
& \mathbf{E}_{1}, \mathbf{E}_{2} \text { and } \mathbf{E}_{3} \\
& \mathbf{u}_{1}, \mathbf{u}_{2} \text { and } \mathbf{u}_{3} \\
& \mathbf{v}_{1}, \mathbf{v}_{2} \text { and } \mathbf{v}_{3} \\
& \sigma_{1}, \sigma_{2} \text { and } \sigma_{3}
\end{aligned}
$$

Linear polarization (signal):

$$
\operatorname{rank}(\mathbf{W})=1
$$

$$
\mathbf{W}=\mathbf{E}_{1}
$$

Attribute e

(by Jin and Ronen, 2005)

$$
e=\left(\sigma_{1}-\sigma_{3}\right)\left(\sigma_{2}-\sigma_{3}\right)
$$

Attribute \boldsymbol{e} arranged in non-descending order

Filtering

$$
\mathbf{F}= \begin{cases}\mathbf{W} & \text { if } e<e_{g} \\ \mathbf{W}-\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right) & \text { if } e \geq e_{g}\end{cases}
$$

F result of filtering
W original 3C data
\mathbf{E}_{1} and \mathbf{E}_{2} first two eigenimages of low-pass filtered original data
... How much signal energy remains in the third SVD term E3?

Mathematical model of the record

$$
\mathbf{W}=\left(\mathbf{w}_{x} \mathbf{w}_{y} \mathbf{w}_{z}\right)
$$

$\mathbf{w}_{i}=a_{i} \mathbf{D}_{i} \mathbf{g}+b_{i} \mathbf{s}+\mathbf{n}_{i} \quad$ with

whmanplypurypurna

$$
\mathbf{D}_{i}= \begin{cases}\mathbf{I}, & i=x, y \\ \mathbf{H}, & i=z\end{cases}
$$

identity operator
discrete Hilbert transform
a_{i} and b_{i} amplitudes of ground roll and signal
g and s "forms" of ground roll and signal

$$
\|\mathbf{g}\|=\|\mathrm{Hg}\|=\|s\|=1
$$

$$
\left\|\mathbf{n}_{i}\right\|=c^{2}
$$

Cross-correlation matrix

$$
\mathbf{R}=\mathbf{W}^{T} \mathbf{W}=\left[\begin{array}{ccc}
a_{x}^{2}+b_{x}^{2}+c^{2} & a_{x} a_{y}+b_{x} b_{y} & b_{x} b_{z} \\
a_{x} a_{y}+b_{x} b_{y} & a_{y}^{2}+b_{y}^{2}+c^{2} & b_{y} b_{z} \\
b_{x} b_{z} & b_{y} b_{z} & a_{z}^{2}+b_{z}^{2}+c^{2}
\end{array}\right]
$$

Characteristic polynomial $|\mathbf{R}-\lambda \mathbf{I}|=0$

$$
\lambda_{0}=\lambda-c^{2}
$$

$$
\lambda_{0}^{3}+q_{2} \lambda_{0}^{2}+q_{1} \lambda_{0}+q_{0}=0
$$

q_{0}, q_{1}, q_{2} are functions of ground roll and signal amplitudes

Cardano's formula:

$$
\lambda_{3}=\sigma_{3}^{2}=2 \sqrt{-Q} \cos [(\theta+2 \pi) / 3]+A / 3+c^{2}
$$

A, Q, θ are functions of ground roll and signal amplitudes

$$
\mathbf{a}=\left\{a_{x}, a_{y}\right\} \quad \mathbf{b}=\left\{b_{x}, b_{y}\right\}
$$

$$
\text { If } \alpha=0 \text {, then } \lambda_{3}=c^{2}
$$

$$
\mathbf{a}=\left\{a_{x}, a_{y}\right\} \quad \mathbf{b}=\{b x, b y\}
$$

Signal

Signal

If ground roll is much stronger than signal, only an appreciable part of the horizontal signal component perpendicular to vector a remains after polarization filtering.

Stochastic simulation of synthetic data

$$
\mathbf{w}_{i}=a_{i} \mathbf{D}_{i} \mathbf{g}+b_{i} \mathbf{s}
$$

"Forms" \mathbf{g} and \mathbf{s} are independent stochastic processes
Random noise is negligible
Signal has three components
Ground roll has x and z components with fixed ratio of their energies: $\frac{a_{z}^{2}}{a_{x}^{2}}=4$

We studied the performance of polarization filtering depending on
(1) ground roll-to-signal energy ratio $e=\left(a_{x}^{2}+a_{z}^{2}\right) /\left(b_{x}^{2}+b_{y}^{2}+b_{z}^{2}\right)$
(2) vertical-to-horizontal signal component energy ratio $p=b_{z}^{2} /\left(b_{x}^{2}+b_{y}^{2}\right)$
(3) angle α between vectors \mathbf{a} and \mathbf{b}

We consider how much signal energy remains on y component
Since P and S waves behave differently, we consider them separately.

P waves

the correlation coefficient with the "pure" signal

Y component characteristics after polarisation filtering depending on ground roll-to-signal energy ratio e, vertical-to-horizontal signal component energy ratio p, and angle α between vectors \mathbf{a} and \mathbf{b}.

S waves

the correlation coefficient with the "pure" signal

Y component characteristics after polarisation filtering depending on ground roll-to-signal energy ratio e, horizontal-to-vertical signal component energy ratio p, and angle α between vectors \mathbf{a} and \mathbf{b}.

Conclusions

- Single-station SVD-based polarization filtering has been investigated theoretically and using stochastic simulation of synthetic data
- After filter application, most of signal energy can be preserved only on horizontal component perpendicular to the plane where ground roll propagates
- For P - and SV-wave data, if α is large and horizontal to vertical components energy ratio of signal is large, then application of the filter is favorable.
- For SH-wave data, application of the filter is favorable if ground roll-to-signal energy ratio is rather high.
- Influence of errors in scaling between data components is planned to be investigated

Acknowledgement

 S-Statoil

- Kenneth Duffaut

