Normal modes revisited – some field observations

by M. Landrø, NTNU and P. Hatchell, Shell

Objective

 Improved understanding of ultrafar offset seismic signals

Motivation

- Exploit normal modes for monitoring changes within waterlayer and first layer below seabed
- Scaring effects on fish: Need to know signal characteristics versus water depth and subsurface properties

Definitions used by Pekeris

Estimating subtle changes in water layer velocities

Analysis of Guided Waves Recorded on Permanent Ocean Bottom Cables

P.J. Hatchell* (Shell International Exploration & Production BV), P.B. Wills (Shell International Exploration & Production BV) & M. Landro (NTNU)

EAGE, London, 2007

Variation of NMO velocity between various surveys at Valhall is used to estimate subtle changes in water velocity: ~ 1.3 %! Such changes are important for accurate 4D time shift analysis.

Figure 1: Radial geophone records from an array of airgun shots extending 5 km on either side of the geophone location. The shot spacing is 50m.

Hatchell, Wills, Landrø EAGE, 2008

Days from January 1

Impact of water velocities/multiples on time-lapse time-shifts

Top reservoir timeshifts

Hatchell, Wills, Didraga First Break, 2008

THEORY

(Ewing et al, 1957)

Acoustic case: Water layer over an infinite half-space:

The periodic equation:

$$\tan k H \sqrt{\frac{c^2}{\alpha_1^2} - 1} = -\frac{\rho_2}{\rho_1} \frac{\sqrt{\frac{c^2}{\alpha_1^2} - 1}}{\sqrt{1 - \frac{c^2}{\alpha_2^2}}} \implies$$

C = phase velocity of normal mode

Solutions corresponding to different modes of propagation

Modeled normal modes (4 modes)

- Maximum phase and group velocity equal to velocity of second layer
- Minimum phase velocity equal to water velocity
- Minimum group velocity decreases with increasing mode number

Fluid-solid interface (Press and Ewing, 1950)

 $\beta_2/c \ll 1$

The refracted wave

This wave is close to monochromatic – can we estimate the frequency?

Assuming a phase velocity close to that of the second layer, we find from the period equation:

$$k_{n}H \approx (2n-1)\frac{\pi}{2\sqrt{\frac{\alpha_{2}^{2}}{\alpha_{1}^{2}}-1}} \quad \Longrightarrow \quad f_{n} = \frac{(2n-1)\alpha_{1}\alpha_{2}}{4H\sqrt{\alpha_{2}^{2}-\alpha_{1}^{2}}}$$

Data acquisition

Ref.: Seismic interference noise recorded by M/V Rig Master, by M. Landrø and S. Vaage, 1989

Refraction wave => estimates of α_2

Low frequencies see "deeper" into earth => velocity decrease with frequency

Comparing traveltimes

Simple raytracing considerations – water wave

Frequency content of water wave decreases with increasing recording time

Observation of normal modes

4 modes interpreted – assumping that the trends represent group velocity – hard to see phase velocity on this plot

Modeling of 4 first modes assuming v2=1725 m/s and a density ratio of 1.8. Dots represent **group** velocity estimates from top figure

Effect of velocity change in layer 2 from 1700 m/s (solid) to 1800 m/s (dashed)

Effect of density change in layer 2 from 1.8 (solid) to 2.2 (dashed)

Effect of changing the water depth from 75 (solid) to 300 m (dashed)

Conclusions

- 4 normal modes interpreted at 13 km offset data from Ekofisk
- Group velocity versus frequency observations fit well with theory
- No clear observations of phase velocity versus frequency
- Frequency analysis of refraction wave shows 4 distinct peaks corresponding to slightly decreasing velocities of second layer

Future work

- Include field data for various water depths
- Explore possibilities for 4D analysis of near seabed effects
- Explore possibilities for estimating variations in water velocities (4D calibration of time shifts)

Acknowledgments

- PGS (Seres) for permission to use the data
- NFR for financial support to the ROSE project at NTNU