Velocity and thickness estimation of thin CO₂-layers with uniform and patchy saturations

Amir Ghaderi, Martin Landrø

Rose Meeting 2010

The Problem

Real seismic data anomaly

A section from Utsira formation Ghaderi & Landrø, Geophysics 2009

The Problem

S_{anomaly}

For the 4D seismic anomaly, we are interested in an estimate of

- thickness: Δz
- change in velocity : Δν
- a quantitative measure of saturation

An estimate for solution

Assuming known Δv (some rock physics model, well log), Ghaderi & Landrø (geophysics 2009), propose to estimate Δz by

Synthetic test of the model

 Wedge model as a basis for testing the proposed estimate on synthetic data

Convolution model (primaries only) – homogenous saturation distribution

The Amplitude response of wedge model

Estimation of thickness Δz , given Δv

ightarrow

Estimation of thickness Δz , given Δv

 One simple thickness estimate is based on direct picks and:

 $\Delta z = (t_2 - t_1) \Delta v$

Using Ghaderi & Landrø estimate:

$$\Delta z = -z \frac{v}{\Delta v} \frac{\Delta T}{T}$$

Estimation of thickness, given Δv

Observations

Direct picking on the wedge leads to

- an underestimate for a limited range of thicknesses above the tuning thickness
- For thicknesses below the tuning thickness, it tend to a minimum as the Wedge gets thinner, leading to a gross overestimate.

Ghaderi & Landrø method:

- The result is better by picking traveltime below the event.
- Knowing velocity change, measurements of travel time below the 4D seismic anomaly, can predict the thickness below tuning.

Simultaneous estimation of Δv and Δz

Ghaderi & Landrø, Geophysics (2009)

4D amplitude response of a thin layer :

$$S_d(f_0) = -\frac{|P(f_0)|}{v_1 \cos^3 \theta} \frac{\Delta T}{T} \times \operatorname{sinc} \left(\frac{\Delta T}{T} \frac{z_1 2\pi f_0}{\Delta v \cos \theta} \right)$$

Measure S_d and $\Delta T => \Delta v$

Propose to extend to all frequencies

$$S_d(f) = \left(\int_{f_l}^{f_h} S_d^2(f) df\right)$$

Modified expression from A.Barns, SEG Ext. Abs. 2004

Frequency spectrum of Ricker, 50 Hz

Comparing S_d with synthetic modeling of the wedge

Inverting for Δv (exact answer: 200 m/s) Least square method

Estimated thicknesses from inversion

Application to real data

Cross-line number

Est	tim	ate	S O	fΔv	and	Δz

- According to Ghaderi&Landrø
- Values in parenthesis based on Gassmann and picked timeshifts

Monitor year	Δv (m/s)	Δz (m)
1999	200	15 (4)
2001	400	15 (8)
2002	500	15 (10)

So, what is happening?

Look at some rock physics models

- Brie, describing the patchy saturation distribution
- Gassmann-Wood, the uniform distribution
- Calibrating the patchy saturation with White's model

P-wave velocity and CO₂ saturation from Nagaoka field, Konishi et al, EAGE 2008

CO₂ distribution under thin shale layers

- Ongoing work
 - Ghaderi, Landrø and Lindeberg
- Mapping of the CO₂ 'finger' propagation, and variation of the thicknesses under shale
- Effect of capillary pressure on saturation distribution

Capillary pressure and transition zone

- Capillary pressure:
 - Difference between the two phase pressure

 $P_c = P_{fl_2} - P_{fl_1}$

- Capillary transition zone:
 - The mixing zone that occurs between two phases (due to capillary pressure) when the fluids are immiscible

Figure: Erik Lindeberg, unpublished data Utsira

Modeling the transition zone

- 4 layer wedge model
- Progressively lower CO₂ saturations further down the model
- Average velocity change = 350 m/s

Inverting for Δv (average = 350 m/s) Patchy saturation (4 layer model)

Estimated thicknesses from inversion

Patchy saturation (4 layer model)

Conclusion

- An efficient model is provided for estimating changes in velocity and thickness for CO₂ layers within and below the tuning thicknesses.
- A good match for homogenous saturation distribution
- A reasonable estimation with patchy saturation
- The scaling factor between the model and the data plays an important role in the RMS error estimation

Acknowledgement

Hossein Mehdi Zadeh

Lot of support and discussions

- Alexey Stovas
 - Numerical code, discussions
- Erik Lindeberg
 - Discussions, support
- Mathias Alerini
 - Discussions, support