3D CSEM grid-modeling and time-lapse sensitivity analysis for subsurface CO₂ storage

Anwar Hossain Bhuiyan, Martin Landrø and Ståle E. Johansen

19 April, 2010

Outline

- ✓ CSEM method
- ✓ Objectives
- ✓ Time-lapse CSEM sensitivity analysis for CO₂ sequestration
- ✓ Conclusions

CSEM method

EM wave propagation

CSEM method

Electric field responses

CSEM method

EM response is strongly influenced by **acquisition geometry,** which is expressed in terms of source-receiver azimuth

Inline geometry: fields recorded along a line parallel to the source dipole axis

Broadside geometry: fields recorded along a line perpendicular to the source dipole axis

Azimuth decomposition

TL CSEM sensitivity to CO₂ sequestration

Why CSEM?

- 4D seismic monitoring is difficult beyond a certain level of fluid saturation
- Resistivity is very sensitive to changes in fluid saturation. Seismic data have indirect sensitivity, while the CSEM data have strong sensitivity to resistivity
- Therefore, time-lapse CSEM data can be complementary in seismic reservoir monitoring

Objectives

- Time-lapse CSEM sensitivity analysis with respect to CO₂ sequestration
- \blacktriangleright Detection of potential CO₂ leakage from the main storage
- Evaluation of the effects of shaliness on time-lapse CSEM sensitivity

Formation resistivity

Resistivity estimates from petrophysical parameters

TL sensitivity to CO₂ sequestration

Sensitivity analyses for CO₂ sequestration include:

- Lateral expansion
- Vertical expansion
- Shallow accumulation of CO₂ leakage
- Effect of shaliness on time-lapse sensitivity

Changes in CO₂ plume diameter

Area response

TL anomaly for changes in plume diameter

Lateral expansion of CO_2 plume by 200% gives 40% time-lapse anomaly at 2500 m offset for 0.5 Hz.

Changes in CO₂ plume thickness

Area response

TL anomaly for changes in plume thickness

Vertical expansion of CO_2 plume by 300% gives only 9% time-lapse anomaly at 2500 m offset for 0.5 Hz.

Shallow accumulation of CO₂ leakage

Shallow accumulation of CO₂ leakage

Area response

Inverse variation of frequency and offset combination helps to differentiate shallow and deep anomalies

Effect of shaliness on TL CSEM anomaly

A clean sandstone reservoir with 60% CO_2 saturation gives 23 Ω m resistivity

 CO_2 saturation increase upto 80%, which gives resistivity estimates of 50 Ω m

A clayey reservoir (10% dispersed clay) with 60% CO_2 saturation gives 10.6 Ω m resistivity

80% CO₂ saturation gives resistivity estimates of 23 Ωm for clayey reservoir

Frequency = 0.5 Hz, Offset = 2500 m

Volumetric resistance vs. TL anomaly

Assume that CSEM sensitivity of a 3D earth model is the function of volumetric resistance ($S=\rho V$). Time-lapse anomalies with respect to variation in volumetric resistance is evaluated as:

$$\delta S = V(\delta \rho) + \rho(\delta V)$$

Time-lapse responses considered for

- Changes in diameter, while thickness and saturation remain fixed
- Changes in thickness, while diameter and saturation remain fixed
- Inverse variation of thickness and diameter, while volume & saturation remain fixed
- ✓ Only saturation change

Volumetric resistance vs. TL anomaly

The empirical relationship between time-lapse anomaly, $\delta(NM)$ and volumetric resistance can be given as:

$$\delta(MN) = \chi D + \gamma H + \psi e^{\tau \rho}$$

Conclusions: TL CSEM sensitivity analysis

- Time-lapse CSEM anomaly is the combined effect of diameter, thickness & resistivity of the resistive pore-fluids and lateral changes has higher sensitivity than the vertical ones
- □ Gradual inverse variation of frequency and offset allows for detecting shallow accumulation of CO₂ leakage
- □ Small percentage of dispersed clay (e.g. 10%) within a reservoir has weak significance on the magnitudes of time-lapse anomaly

Thanks for your attention

