Stress Dependent P- and S-Wave Velocities in Brine Saturated Sand-Clay Mixtures

Summary of MSc Thesis

Presented by Mohammad Hossain Bhuiyan

> Supervisor Prof. Rune Martin Holt

> > 19 April 2010

Department of Petroleum Engineering and Applied Geophysics NTNU, Trondheim

- 1. The effect of external stress and pore pressure on the wave velocities.
- 2. Stress-strain behavior of unconsolidated sand-clay lithology.
- 3. The effect of clay contents on wave velocities and porosities.
- 4. Change of Anisotropy with applied stress and lithology.
- 5. Reflection coefficient on various lithological Interfaces.
- 6. Wave velocities guide to lithological identification.
- 7. The effective stress coefficient, stress sensitivity and strain sensitivity parameter.

Test Plan (Uniaxial strain setup)

Example taken from test of sample with high clay content

Strain Hysteresis

Except pure sand, all other lithologies show permanent strain.

Change of porosity with increase in clay content

- Porosity decrease with increasing clay content where sand is load bearing grains.
- In clay load bearing samples, porosity increase with increasing clay content.

Using only Oedometer test data

Vertical P-wave velocities versus clay content

- In sand load bearing (<30-40 vol% clay) samples, P-wave velocity increase with clay content.
- Opposite trend is for higher clay content.

Vertical S-wave velocities versus clay content

Using only Oedometer test data

Initial decrease of S-wave velocity is due to the increase of density more than shear modulus.

P-wave velocity anisotropy versus clay content

Using only Oedometer test data

- P-wave anisotropy (epsilon) increase with increasing clay. More or less equal for sample with 40 to 75 volume percent clay.
- The reduction of epsilon in pure clay might be attributed to the textural arrangement of grains.

The P-wave anisotropy with net vertical stress for different lithologies

- Pure sand does not show any P-wave anisotropy (epsilon) at any stress level.
- The sample even with few volume percent of clay show P-wave anisotropy at low stress level indicating intrinsic anisotropy.
- However, epsilon is less in pure clay compared to sample with 40-75 volume percent clay.
- The P-wave anisotropy is decrease with increasing stress, indicating stress induced effect on lithologies.

- The zero offset reflection coefficient (RC) varies with clay content of the overburden and reservoir rock.
- In this case, overburden with 40-70 volume percent clay make the interpretation difficult, since RC is close to zero.
- RC increase with stress when the overburden having less than 50 volume percent clay whereas

Vertical P-wave velocity versus vertical S-wave velocity to distinguish different lithologies

test data

Velocity Model for pure unconsolidated sand

Best fit for the brine saturated unconsolidated pure sand at low vertical stress (~10.0 MPa) where fitting parameter R²=0.99.

$V_s = 1.23 V_p - 1.895 (km/sec)$

Han (1986) and Castagna et al., 1993 models prepared based on consolidated sand samples.

Effective stress coefficient

$$V_{p,s} = f(\sigma, P_f)$$

 $V_{p,s}$ is the P-wave and S-wave velocity and σ is the external stress and P_f is the pore pressure.

n is the effective stress coefficient, v is the wave velocity of interest,

- $\sigma_{z}~$ is the vertical stress and
- P_f is the pore pressure.

Change of Velocity due to external stress and pore pressure change

(without considering effective stress coefficient)

- Stress sensitivity of the velocity show different for change of external stress and pore pressure.
- This study lead to investigate the effective stress coefficient for velocity

Change of Velocity due to external stress and pore pressure change (considering effective stress coefficient)

Effective vertical stress (MPa)

Effective stress coefficient with clay content

S for different waves type and consolidation state as function of clay content (only Oedometer test data)

S is the stress sensitivity of the velocity, $S = \frac{\Delta V}{V\Delta\sigma'} \quad \Delta\sigma' \text{ is the change of net applied stress}$ V is the change of velocity

The stress sensitivity in pure sand and sample with vol% clay contents as a function of stress path (only Triaxial data used)

Stress sensitivity of axial P-wave velocity for 3 different stress paths Stress sensitivity of axial S-wave velocity for 3 different stress paths

50

R for different waves type and consolidation state as function of clay content (only Oedometer test samples)

 $R = \frac{\Delta V_{pz/sz}}{V_{pz/sz} \cdot \Delta \mathcal{E}_z} \frac{\mathcal{E}_z}{V_{pz/sz}}$ vertical strain and defined as positive for compaction $V_{pz/sz}$ vertical P-/S-wave velocity

R as a function of stress path (only Triaxial data used)

The value of *R* obtained in this study shows conformability with Holt et al. (2008).

Conclusions

- A transition between clay and sand bearing lithologies occur around 30 40 % clay content, resulting in a minimum porosity and a maximum in P- and S-wave velocities.
- With presence of clay, intrinsic velocity anisotropy occurs at low stress, indicating textural ordering of clay minerals.
- □ In all samples, velocity anisotropy decreases with increasing stress.
 - In pure sand, the anisotropy is negative and purely stress induced.
 - P-wave anisotropy in pure clay is lower than in samples with 40-75 volume percent clay!
- Stress and Strain sensitivities depend on loading history, clay content and stress path.
 - The effective stress coefficient controlling velocities decrease with increase in clay content.

